File size: 7,571 Bytes
9230ccf
b8c3f0e
af40ecb
d00978d
 
 
 
 
 
 
af40ecb
 
eb0d262
9230ccf
 
 
b8c3f0e
 
 
 
 
9230ccf
d00978d
 
 
 
 
 
53474c3
d00978d
 
 
3f95d3a
d00978d
 
64ef132
 
d00978d
 
 
 
 
 
 
 
 
 
 
 
 
1d454a2
d00978d
7835cb1
 
1d454a2
7835cb1
 
 
d00978d
 
1d454a2
d00978d
53474c3
64ef132
 
1d454a2
d00978d
 
 
 
 
 
64ef132
d00978d
9230ccf
 
 
 
69c44dc
41b93dc
9230ccf
 
 
 
eb0d262
41b93dc
9230ccf
 
 
 
 
 
 
 
 
 
d00978d
b865247
4f21439
9230ccf
104a909
9230ccf
 
b672394
9230ccf
219f5f4
 
51fab47
4362b13
c4ed919
51fab47
 
219f5f4
 
51fab47
9230ccf
d00978d
 
 
64ef132
d00978d
 
 
 
 
 
 
64ef132
d00978d
 
 
 
9230ccf
 
 
dedce6c
a885267
dedce6c
ed2a67d
d00978d
0882058
a885267
0798f48
 
 
5ae4121
 
b672394
0798f48
 
d00978d
0798f48
 
 
 
 
 
 
 
 
d00978d
0798f48
 
 
 
 
 
 
 
 
22c1b18
2335c4d
d00978d
fbc1761
0798f48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d00978d
0798f48
d00978d
 
8022e8a
3f95d3a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
from openai import OpenAI
import os
import json
from datetime import datetime
from zoneinfo import ZoneInfo
import uuid
from pathlib import Path
from huggingface_hub import CommitScheduler

openai_api_key = os.getenv('api_key')
openai_api_base = os.getenv('url')
model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

# Define the file where to save the data. Use UUID to make sure not to overwrite existing data from a previous run.
feedback_file = Path("user_feedback/") / f"data_{uuid.uuid4()}.json"
feedback_folder = feedback_file.parent

# Schedule regular uploads. Remote repo and local folder are created if they don't already exist.
scheduler = CommitScheduler(
    repo_id="team-hatakeyama-phase2/8x8b-server-original-data4",  # Replace with your actual repo ID
    repo_type="dataset",
    folder_path=feedback_folder,
    path_in_repo="data",
    every=60,  # Upload every 1 minutes
)

def save_or_update_conversation(conversation_id, history,
                                message, response, message_index, liked=None):
    """
    Save or update conversation data in a JSON Lines file.
    If the entry already exists (same id and message_index), update the 'label' field.
    Otherwise, append a new entry.
    """
    with scheduler.lock:
        # Read existing data
        data = []
        if feedback_file.exists():
            with feedback_file.open("r") as f:
                data = [json.loads(line) for line in f if line.strip()]

        # Find if an entry with the same id and message_index exists
        #entry_index = next((i for i, entry in enumerate(data) if entry['id'] == conversation_id and entry['message_index'] == message_index), None)

        #if entry_index is not None:
        ##    # Update existing entry
        #    data[entry_index]['label'] = liked
        #else:
        #always append
        if True:
            # Append new entry
            data.append({
                #"id": conversation_id,
                "timestamp": datetime.now(ZoneInfo("Asia/Tokyo")).isoformat(),
                "history":json.dumps(history,ensure_ascii=False),
                "prompt": str(message),
                "completion": str(response),
                #"message_index": message_index,
                "label": liked
            })

        # Write updated data back to file
        with feedback_file.open("w") as f:
            for entry in data:
                f.write(json.dumps(entry,ensure_ascii=False) + "\n")


def respond(
    message,
    history: list[tuple[str, str]],
    conversation_id,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [
        {"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    for chunk in client.chat.completions.create(
        model=model_name,
        messages=messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        stop="### 指示:",
    ):
        token=chunk.choices[0].delta.content
        if token is not None:
            if response.find("### 指示:")>=0 or token.find("### 指示:")>=0:
                response=response.split("### 指示:")[0]
                token=token.split("### 指示:")[0]
                response=response.replace("### 指示:","")
                token=token.replace("### 指示:","")
                break
            response += token
        #response=response.replace("### 指示:","")
        yield response
    
    # Save conversation after the full response is generated
    message_index = len(history)
    save_or_update_conversation(conversation_id,messages, message, response, message_index)

def vote(data: gr.LikeData, history, conversation_id):
    """
    Update user feedback (like/dislike) in the local file.
    """
    message_index = data.index[0]
    liked = data.liked
    save_or_update_conversation(conversation_id, history,None, None, message_index, liked)

def create_conversation_id():
    return str(uuid.uuid4())
    
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""

description = """
### [Tanuki-8x8B-dpo-v1.0](https://huggingface.co/weblab-GENIAC/Tanuki-8x8B-dpo-v1.0)との会話(期間限定での公開)
- 9/16停止中
- 人工知能開発のため、原則として**このChatBotの入出力データは全て著作権フリー(CC0)で公開する**ため、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。
- **上記の条件に同意する場合のみ**、以下のChatbotを利用してください。
"""


HEADER = description
FOOTER = """### 注意
- コンテクスト長が4096までなので、あまり会話が長くなると、エラーで停止します。ページを再読み込みしてください。
- v1.10"""

def run():
    conversation_id = gr.State(create_conversation_id)
    chatbot = gr.Chatbot(
        elem_id="chatbot",
        scale=1,
        show_copy_button=True,
        height="70%",
        layout="panel",
    )
    with gr.Blocks(fill_height=True) as demo:
        gr.Markdown(HEADER)
        chat_interface = gr.ChatInterface(
            fn=respond,
            stop_btn="Stop Generation",
            cache_examples=False,
            multimodal=False,
            chatbot=chatbot,
            additional_inputs_accordion=gr.Accordion(
                label="Parameters", open=False, render=False
            ),
            additional_inputs=[
                conversation_id,
                gr.Textbox(value="以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。",
                           label="System message(試験用: 変えると性能が低下する可能性があります。)",
                                              render=False,),
                gr.Slider(
                    minimum=1,
                    maximum=4096,
                    step=1,
                    value=1024,
                    label="Max tokens",
                    visible=True,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.3,
                    label="Temperature",
                    visible=True,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=1.0,
                    label="Top-p",
                    visible=True,
                    render=False,
                ),
            ],
            analytics_enabled=False,
        )
        chatbot.like(vote, [chatbot, conversation_id], None)
        gr.Markdown(FOOTER)
    demo.queue(max_size=256, api_open=True)
    demo.launch(share=True, quiet=True)

if __name__ == "__main__":
    run()