Spaces:
Sleeping
Sleeping
karwanjiru
commited on
Commit
•
091d316
1
Parent(s):
779da7d
content moderation fixed
Browse files- app.py +19 -41
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,15 +1,16 @@
|
|
1 |
import os
|
2 |
-
from
|
|
|
3 |
import torch
|
4 |
-
from
|
5 |
from transformers import AutoProcessor, FocalNetForImageClassification
|
6 |
-
import gradio as gr
|
7 |
-
import numpy as np
|
8 |
-
import random
|
9 |
from diffusers import DiffusionPipeline
|
|
|
|
|
10 |
from huggingface_hub import InferenceClient
|
11 |
import requests
|
12 |
-
from
|
|
|
13 |
|
14 |
# Paths and model setup
|
15 |
model_path = "MichalMlodawski/nsfw-image-detection-large"
|
@@ -38,27 +39,28 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
38 |
|
39 |
# Load the diffusion pipeline
|
40 |
if torch.cuda.is_available():
|
41 |
-
|
42 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
43 |
pipe.enable_xformers_memory_efficient_attention()
|
44 |
pipe = pipe.to(device)
|
45 |
-
else:
|
46 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
47 |
pipe = pipe.to(device)
|
48 |
|
49 |
MAX_SEED = np.iinfo(np.int32).max
|
50 |
-
MAX_IMAGE_SIZE = 1024
|
51 |
|
52 |
# Initialize the InferenceClient
|
53 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
54 |
|
|
|
|
|
|
|
|
|
|
|
55 |
# Inference function for generating images
|
56 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
57 |
if randomize_seed:
|
58 |
seed = random.randint(0, MAX_SEED)
|
59 |
-
|
60 |
generator = torch.Generator().manual_seed(seed)
|
61 |
-
|
62 |
image = pipe(
|
63 |
prompt=prompt,
|
64 |
negative_prompt=negative_prompt,
|
@@ -68,28 +70,23 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
68 |
height=height,
|
69 |
generator=generator
|
70 |
).images[0]
|
71 |
-
|
72 |
return image
|
73 |
|
74 |
# Respond function for the chatbot
|
75 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
76 |
messages = [{"role": "system", "content": system_message}]
|
77 |
-
|
78 |
for val in history:
|
79 |
if val[0]:
|
80 |
messages.append({"role": "user", "content": val[0]})
|
81 |
if val[1]:
|
82 |
messages.append({"role": "assistant", "content": val[1]})
|
83 |
-
|
84 |
messages.append({"role": "user", "content": message})
|
85 |
-
|
86 |
response = client.chat_completion(
|
87 |
messages,
|
88 |
max_tokens=max_tokens,
|
89 |
temperature=temperature,
|
90 |
top_p=top_p,
|
91 |
)
|
92 |
-
|
93 |
return response.choices[0].message['content']
|
94 |
|
95 |
# Function to generate posts
|
@@ -104,9 +101,10 @@ def generate_post(prompt, max_tokens, temperature, top_p):
|
|
104 |
|
105 |
# Function to moderate posts
|
106 |
def moderate_post(post):
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
110 |
return "Post adheres to community guidelines."
|
111 |
|
112 |
# Function to generate images using the diffusion pipeline
|
@@ -117,26 +115,6 @@ def generate_image(prompt):
|
|
117 |
|
118 |
# Function to moderate images
|
119 |
def moderate_image(image):
|
120 |
-
# Convert the PIL image to a format that can be sent for moderation
|
121 |
-
buffered = BytesIO()
|
122 |
-
image.save(buffered, format="JPEG")
|
123 |
-
image_bytes = buffered.getvalue()
|
124 |
-
|
125 |
-
# Replace with your actual image moderation API endpoint
|
126 |
-
moderation_api_url = "https://example.com/moderation/api"
|
127 |
-
|
128 |
-
# Send the image to the moderation API
|
129 |
-
response = requests.post(moderation_api_url, files={"file": image_bytes})
|
130 |
-
result = response.json()
|
131 |
-
|
132 |
-
# Check the result from the moderation API
|
133 |
-
if result.get("moderation_status") == "approved":
|
134 |
-
return "Image adheres to community guidelines."
|
135 |
-
else:
|
136 |
-
return "Image does not adhere to community guidelines."
|
137 |
-
|
138 |
-
# Function to classify NSFW images
|
139 |
-
def classify_nsfw(image):
|
140 |
image_tensor = transform(image).unsqueeze(0)
|
141 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
142 |
with torch.no_grad():
|
@@ -214,6 +192,6 @@ with gr.Blocks(css=css) as demo:
|
|
214 |
selected_image = gr.Image(type="pil", label="Upload Image for Moderation")
|
215 |
classify_button = gr.Button("Classify Image")
|
216 |
classification_result = gr.Textbox(label="Classification Result")
|
217 |
-
classify_button.click(
|
218 |
|
219 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
from io import BytesIO
|
3 |
+
import random
|
4 |
import torch
|
5 |
+
from PIL import Image
|
6 |
from transformers import AutoProcessor, FocalNetForImageClassification
|
|
|
|
|
|
|
7 |
from diffusers import DiffusionPipeline
|
8 |
+
from detoxify import Detoxify
|
9 |
+
import gradio as gr
|
10 |
from huggingface_hub import InferenceClient
|
11 |
import requests
|
12 |
+
from torchvision import transforms
|
13 |
+
import numpy as np
|
14 |
|
15 |
# Paths and model setup
|
16 |
model_path = "MichalMlodawski/nsfw-image-detection-large"
|
|
|
39 |
|
40 |
# Load the diffusion pipeline
|
41 |
if torch.cuda.is_available():
|
42 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, use_safetensors=True)
|
|
|
43 |
pipe.enable_xformers_memory_efficient_attention()
|
44 |
pipe = pipe.to(device)
|
45 |
+
else:
|
46 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
47 |
pipe = pipe.to(device)
|
48 |
|
49 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
50 |
|
51 |
# Initialize the InferenceClient
|
52 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
53 |
|
54 |
+
# Function to analyze text
|
55 |
+
def analyze_text(input_text):
|
56 |
+
results = Detoxify('original').predict(input_text)
|
57 |
+
return results
|
58 |
+
|
59 |
# Inference function for generating images
|
60 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
61 |
if randomize_seed:
|
62 |
seed = random.randint(0, MAX_SEED)
|
|
|
63 |
generator = torch.Generator().manual_seed(seed)
|
|
|
64 |
image = pipe(
|
65 |
prompt=prompt,
|
66 |
negative_prompt=negative_prompt,
|
|
|
70 |
height=height,
|
71 |
generator=generator
|
72 |
).images[0]
|
|
|
73 |
return image
|
74 |
|
75 |
# Respond function for the chatbot
|
76 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
77 |
messages = [{"role": "system", "content": system_message}]
|
|
|
78 |
for val in history:
|
79 |
if val[0]:
|
80 |
messages.append({"role": "user", "content": val[0]})
|
81 |
if val[1]:
|
82 |
messages.append({"role": "assistant", "content": val[1]})
|
|
|
83 |
messages.append({"role": "user", "content": message})
|
|
|
84 |
response = client.chat_completion(
|
85 |
messages,
|
86 |
max_tokens=max_tokens,
|
87 |
temperature=temperature,
|
88 |
top_p=top_p,
|
89 |
)
|
|
|
90 |
return response.choices[0].message['content']
|
91 |
|
92 |
# Function to generate posts
|
|
|
101 |
|
102 |
# Function to moderate posts
|
103 |
def moderate_post(post):
|
104 |
+
results = Detoxify('original').predict(post)
|
105 |
+
for key, value in results.items():
|
106 |
+
if value > 0.5:
|
107 |
+
return "Post does not adhere to community guidelines."
|
108 |
return "Post adheres to community guidelines."
|
109 |
|
110 |
# Function to generate images using the diffusion pipeline
|
|
|
115 |
|
116 |
# Function to moderate images
|
117 |
def moderate_image(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
image_tensor = transform(image).unsqueeze(0)
|
119 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
120 |
with torch.no_grad():
|
|
|
192 |
selected_image = gr.Image(type="pil", label="Upload Image for Moderation")
|
193 |
classify_button = gr.Button("Classify Image")
|
194 |
classification_result = gr.Textbox(label="Classification Result")
|
195 |
+
classify_button.click(moderate_image, selected_image, classification_result)
|
196 |
|
197 |
demo.launch()
|
requirements.txt
CHANGED
@@ -6,4 +6,6 @@ torch
|
|
6 |
transformers
|
7 |
xformers
|
8 |
torchvision
|
9 |
-
Pillow
|
|
|
|
|
|
6 |
transformers
|
7 |
xformers
|
8 |
torchvision
|
9 |
+
Pillow
|
10 |
+
detoxify
|
11 |
+
altair==4.1.0
|