Spaces:
Running
Running
File size: 13,225 Bytes
a461c7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import gradio as gr
import requests
import os
from PIL import Image
import json
from datetime import datetime
# Example data with placeholder JSON for lab_results and bank_statement
examples = [
["bonds_table.png", "Bonds table", "[{\"instrument_name\":\"example\", \"valuation\":0}]"],
["lab_results.png", "Lab results", "{\"patient_name\": \"example\", \"patient_age\": \"example\", \"patient_pid\": 0, \"lab_results\": [{\"investigation\": \"example\", \"result\": 0.00, \"reference_value\": \"example\", \"unit\": \"example\"}]}"],
["bank_statement.png", "Bank statement", "*"]
]
# JSON data for Bonds table
bonds_json = [
{
"instrument_name": "UNITS BLACKROCK FIX INC DUB FDS PLC ISHS EUR INV GRD CP BD IDX/INST/E",
"valuation": 19049
},
{
"instrument_name": "UNITS ISHARES III PLC CORE EUR GOVT BOND UCITS ETF/EUR",
"valuation": 83488
},
{
"instrument_name": "UNITS ISHARES III PLC EUR CORP BOND 1-5YR UCITS ETF/EUR",
"valuation": 213030
},
{
"instrument_name": "UNIT ISHARES VI PLC/JP MORGAN USD E BOND EUR HED UCITS ETF DIST/HDGD/",
"valuation": 32774
},
{
"instrument_name": "UNITS XTRACKERS II SICAV/EUR HY CORP BOND UCITS ETF/-1D-/DISTR.",
"valuation": 23643
}
]
lab_results_json = {
"patient_name": "Yash M. Patel",
"patient_age": "21 Years",
"patient_pid": 555,
"lab_results": [
{
"investigation": "Hemoglobin (Hb)",
"result": 12.5,
"reference_value": "13.0 - 17.0",
"unit": "g/dL"
},
{
"investigation": "RBC COUNT",
"result": 5.2,
"reference_value": "4.5 - 5.5",
"unit": "mill/cumm"
},
{
"investigation": "Packed Cell Volume (PCV)",
"result": 57.5,
"reference_value": "40 - 50",
"unit": "%"
},
{
"investigation": "Mean Corpuscular Volume (MCV)",
"result": 87.75,
"reference_value": "83 - 101",
"unit": "fL"
},
{
"investigation": "MCH",
"result": 27.2,
"reference_value": "27 - 32",
"unit": "pg"
},
{
"investigation": "MCHC",
"result": 32.8,
"reference_value": "32.5 - 34.5",
"unit": "g/dL"
},
{
"investigation": "RDW",
"result": 13.6,
"reference_value": "11.6 - 14.0",
"unit": "%"
},
{
"investigation": "WBC COUNT",
"result": 9000,
"reference_value": "4000-11000",
"unit": "cumm"
},
{
"investigation": "Neutrophils",
"result": 60,
"reference_value": "50 - 62",
"unit": "%"
},
{
"investigation": "Lymphocytes",
"result": 31,
"reference_value": "20 - 40",
"unit": "%"
},
{
"investigation": "Eosinophils",
"result": 1,
"reference_value": "00 - 06",
"unit": "%"
},
{
"investigation": "Monocytes",
"result": 7,
"reference_value": "00 - 10",
"unit": "%"
},
{
"investigation": "Basophils",
"result": 1,
"reference_value": "00 - 02",
"unit": "%"
},
{
"investigation": "Absolute Neutrophils",
"result": 6000,
"reference_value": "1500 - 7500",
"unit": "cells/mcL"
},
{
"investigation": "Absolute Lymphocytes",
"result": 3100,
"reference_value": "1300 - 3500",
"unit": "cells/mcL"
},
{
"investigation": "Absolute Eosinophils",
"result": 100,
"reference_value": "00 - 500",
"unit": "cells/mcL"
},
{
"investigation": "Absolute Monocytes",
"result": 700,
"reference_value": "200 - 950",
"unit": "cells/mcL"
},
{
"investigation": "Absolute Basophils",
"result": 100,
"reference_value": "00 - 300",
"unit": "cells/mcL"
},
{
"investigation": "Platelet Count",
"result": 320000,
"reference_value": "150000 - 410000",
"unit": "cumm"
}
]
}
bank_statement_json = {
"bank": "First Platypus Bank",
"address": "1234 Kings St., New York, NY 12123",
"account_holder": "Mary G. Orta",
"account_number": "1234567890123",
"statement_date": "3/1/2022",
"period_covered": "2/1/2022 - 3/1/2022",
"account_summary": {
"balance_on_march_1": "$25,032.23",
"total_money_in": "$10,234.23",
"total_money_out": "$10,532.51"
},
"transactions": [
{
"date": "02/01",
"description": "PGD EasyPay Debit",
"withdrawal": "203.24",
"deposit": "",
"balance": "22,098.23"
},
{
"date": "02/02",
"description": "AB&B Online Payment*****",
"withdrawal": "71.23",
"deposit": "",
"balance": "22,027.00"
},
{
"date": "02/04",
"description": "Check No. 2345",
"withdrawal": "",
"deposit": "450.00",
"balance": "22,477.00"
},
{
"date": "02/05",
"description": "Payroll Direct Dep 23422342 Giants",
"withdrawal": "",
"deposit": "2,534.65",
"balance": "25,011.65"
},
{
"date": "02/06",
"description": "Signature POS Debit - TJP",
"withdrawal": "84.50",
"deposit": "",
"balance": "24,927.15"
},
{
"date": "02/07",
"description": "Check No. 234",
"withdrawal": "1,400.00",
"deposit": "",
"balance": "23,527.15"
},
{
"date": "02/08",
"description": "Check No. 342",
"withdrawal": "",
"deposit": "25.00",
"balance": "23,552.15"
},
{
"date": "02/09",
"description": "FPB AutoPay***** Credit Card",
"withdrawal": "456.02",
"deposit": "",
"balance": "23,096.13"
},
{
"date": "02/08",
"description": "Check No. 123",
"withdrawal": "",
"deposit": "25.00",
"balance": "23,552.15"
},
{
"date": "02/09",
"description": "FPB AutoPay***** Credit Card",
"withdrawal": "156.02",
"deposit": "",
"balance": "23,096.13"
},
{
"date": "02/08",
"description": "Cash Deposit",
"withdrawal": "",
"deposit": "25.00",
"balance": "23,552.15"
}
]
}
def run_inference(image_filepath, query, key):
if image_filepath is None:
return {"error": f"No image provided. Please upload an image before submitting."}
if query is None or query.strip() == "":
return {"error": f"No query provided. Please enter a query before submitting."}
if key is None or key.strip() == "":
return {"error": f"No Sparrow Key provided. Please enter a Sparrow Key before submitting."}
file_path = None
try:
# Open the uploaded image using its filepath
img = Image.open(image_filepath)
# Extract the file extension from the uploaded file
input_image_extension = image_filepath.split('.')[-1].lower() # Extract extension from filepath
# Set file extension based on the original file, otherwise default to PNG
if input_image_extension in ['jpg', 'jpeg', 'png']:
file_extension = input_image_extension
else:
file_extension = 'png' # Default to PNG if extension is unavailable or invalid
# Generate a unique filename using timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.{file_extension}"
# Save the image
img.save(filename)
# Get the full path of the saved image
file_path = os.path.abspath(filename)
# Prepare the REST API call
url = 'https://katanaml-sparrow-ml.hf.space/api/v1/sparrow-llm/inference'
headers = {
'accept': 'application/json'
}
# Open the file in binary mode and send it
with open(filename, "rb") as f:
files = {
'file': (filename, f, f'image/{file_extension}')
}
# Convert 'query' input to JSON string if needed
try:
# Check if the query is a wildcard '*'
if query.strip() == "*":
query_json = "*" # Directly use the wildcard as valid input
else:
# Attempt to parse the query as JSON
query_json = json.loads(query) # This could return any valid JSON (string, number, etc.)
# Ensure the parsed query is either a JSON object (dict) or a list of JSON objects
if not isinstance(query_json, (dict, list)):
return {
"error": "Invalid input. Only JSON objects, arrays of objects, or wildcard '*' are allowed."}
# If it's a list, make sure it's a list of JSON objects
if isinstance(query_json, list):
if not all(isinstance(item, dict) for item in query_json):
return {"error": "Invalid input. Arrays must contain only JSON objects."}
except json.JSONDecodeError:
return {"error": "Invalid JSON format in query input"}
data = {
'group_by_rows': '',
'agent': 'sparrow-parse',
'keywords': '',
'sparrow_key': key,
'update_targets': '',
'debug': 'false',
'index_name': '',
'types': '',
'fields': query_json if query_json == "*" else json.dumps(query_json), # Use wildcard as-is, or JSON
'options': 'huggingface,katanaml/sparrow-qwen2-vl-7b'
}
# Perform the POST request
response = requests.post(url, headers=headers, files=files, data=data)
# Process the response and return the JSON data
if response.status_code == 200:
return response.json()
else:
return {"error": f"Request failed with status code {response.status_code}", "details": response.text}
finally:
# Clean up the temporary file
if os.path.exists(file_path):
os.remove(file_path)
def handle_example(example_image):
# Find the corresponding entry in the examples array
for example in examples:
if example[0] == example_image:
# Return bonds_json if Bonds table is selected
if example_image == "bonds_table.png":
return example_image, bonds_json, example[2]
# Return lab_results_json if Lab results is selected
elif example_image == "lab_results.png":
return example_image, lab_results_json, example[2]
# Return bank_statement_json if Bank statement is selected
elif example_image == "bank_statement.png":
return example_image, bank_statement_json, example[2]
# Default return if no match found
return None, "No example selected.", ""
# Define the UI
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
with gr.Tab(label="Sparrow UI"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Document Image", type="filepath")
query_input = gr.Textbox(label="Query", placeholder="Use * to query all data or JSON schema, e.g.: [{\"instrument_name\": \"example\"}]")
key_input = gr.Textbox(label="Sparrow Key", type="password")
submit_btn = gr.Button(value="Submit", variant="primary")
# Radio button for selecting examples
example_radio = gr.Radio(label="Select Example", choices=[ex[0] for ex in examples])
with gr.Column():
# JSON output for structured JSON display
output_json = gr.JSON(label="Response (JSON)", height=900, min_height=900)
# Function to handle example selection
def on_example_select(selected_example):
# Handle example selection and return the image, output (text or JSON), and query
return handle_example(selected_example)
# Update image, output JSON, and query when an example is selected
example_radio.change(on_example_select,
inputs=example_radio,
outputs=[input_img, output_json, query_input])
# When submit is clicked
submit_btn.click(run_inference, [input_img, query_input, key_input], [output_json])
gr.Markdown(
"""
---
<p style="text-align: center;">
Visit <a href="https://katanaml.io/" target="_blank">Katana ML</a> for more details.
</p>
"""
)
# Launch the app
demo.queue(api_open=False)
demo.launch(debug=True)
|