File size: 13,688 Bytes
a461c7e
 
 
 
 
 
 
 
 
 
98b4ffc
 
a461c7e
 
 
 
98b4ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a461c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98b4ffc
 
a461c7e
 
 
98b4ffc
 
 
 
 
 
 
a461c7e
 
 
 
98b4ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a461c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18ba687
a461c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import gradio as gr
import requests
import os
from PIL import Image
import json
from datetime import datetime


# Example data with placeholder JSON for lab_results and bank_statement
examples = [
    ["bonds_table.png", "Bonds table", "[{\"instrument_name\":\"str\", \"valuation\":0}]"],
    ["lab_results.png", "Lab results", "{\"patient_name\": \"str\", \"patient_age\": \"str\", \"patient_pid\": 0, \"lab_results\": [{\"investigation\": \"str\", \"result\": 0.00, \"reference_value\": \"str\", \"unit\": \"str\"}]}"],
    ["bank_statement.png", "Bank statement", "*"]
]

# JSON data for Bonds table
bonds_json = {
    "data": [
        {
            "instrument_name": "UNITS BLACKROCK FIX INC DUB FDS PLC ISHS EUR INV GRD CP BD IDX/INST/E",
            "valuation": 19049
        },
        {
            "instrument_name": "UNITS ISHARES III PLC CORE EUR GOVT BOND UCITS ETF/EUR",
            "valuation": 83488
        },
        {
            "instrument_name": "UNITS ISHARES III PLC EUR CORP BOND 1-5YR UCITS ETF/EUR",
            "valuation": 213030
        },
        {
            "instrument_name": "UNIT ISHARES VI PLC/JP MORGAN USD E BOND EUR HED UCITS ETF DIST/HDGD/",
            "valuation": 32774
        },
        {
            "instrument_name": "UNITS XTRACKERS II SICAV/EUR HY CORP BOND UCITS ETF/-1D-/DISTR.",
            "valuation": 23643
        }
    ],
    "valid": "true"
}

lab_results_json = {
    "patient_name": "Yash M. Patel",
    "patient_age": "21 Years",
    "patient_pid": 555,
    "lab_results": [
        {
          "investigation": "Hemoglobin (Hb)",
          "result": 12.5,
          "reference_value": "13.0 - 17.0",
          "unit": "g/dL"
        },
        {
          "investigation": "RBC COUNT",
          "result": 5.2,
          "reference_value": "4.5 - 5.5",
          "unit": "mill/cumm"
        },
        {
          "investigation": "Packed Cell Volume (PCV)",
          "result": 57.5,
          "reference_value": "40 - 50",
          "unit": "%"
        },
        {
          "investigation": "Mean Corpuscular Volume (MCV)",
          "result": 87.75,
          "reference_value": "83 - 101",
          "unit": "fL"
        },
        {
          "investigation": "MCH",
          "result": 27.2,
          "reference_value": "27 - 32",
          "unit": "pg"
        },
        {
          "investigation": "MCHC",
          "result": 32.8,
          "reference_value": "32.5 - 34.5",
          "unit": "g/dL"
        },
        {
          "investigation": "RDW",
          "result": 13.6,
          "reference_value": "11.6 - 14.0",
          "unit": "%"
        },
        {
          "investigation": "WBC COUNT",
          "result": 9000,
          "reference_value": "4000-11000",
          "unit": "cumm"
        },
        {
          "investigation": "Neutrophils",
          "result": 60,
          "reference_value": "50 - 62",
          "unit": "%"
        },
        {
          "investigation": "Lymphocytes",
          "result": 31,
          "reference_value": "20 - 40",
          "unit": "%"
        },
        {
          "investigation": "Eosinophils",
          "result": 1,
          "reference_value": "00 - 06",
          "unit": "%"
        },
        {
          "investigation": "Monocytes",
          "result": 7,
          "reference_value": "00 - 10",
          "unit": "%"
        },
        {
          "investigation": "Basophils",
          "result": 1,
          "reference_value": "00 - 02",
          "unit": "%"
        },
        {
          "investigation": "Absolute Neutrophils",
          "result": 6000,
          "reference_value": "1500 - 7500",
          "unit": "cells/mcL"
        },
        {
          "investigation": "Absolute Lymphocytes",
          "result": 3100,
          "reference_value": "1300 - 3500",
          "unit": "cells/mcL"
        },
        {
          "investigation": "Absolute Eosinophils",
          "result": 100,
          "reference_value": "00 - 500",
          "unit": "cells/mcL"
        },
        {
          "investigation": "Absolute Monocytes",
          "result": 700,
          "reference_value": "200 - 950",
          "unit": "cells/mcL"
        },
        {
          "investigation": "Absolute Basophils",
          "result": 100,
          "reference_value": "00 - 300",
          "unit": "cells/mcL"
        },
        {
          "investigation": "Platelet Count",
          "result": 320000,
          "reference_value": "150000 - 410000",
          "unit": "cumm"
        }
    ],
    "valid": "true"
}

bank_statement_json = {
    "bank": "First Platypus Bank",
    "address": "1234 Kings St., New York, NY 12123",
    "account_holder": "Mary G. Orta",
    "account_number": "1234567890123",
    "statement_date": "3/1/2022",
    "period_covered": "2/1/2022 - 3/1/2022",
    "account_summary": {
    "balance_on_march_1": "$25,032.23",
    "total_money_in": "$10,234.23",
    "total_money_out": "$10,532.51"
    },
    "transactions": [
        {
          "date": "02/01",
          "description": "PGD EasyPay Debit",
          "withdrawal": "203.24",
          "deposit": "",
          "balance": "22,098.23"
        },
        {
          "date": "02/02",
          "description": "AB&B Online Payment*****",
          "withdrawal": "71.23",
          "deposit": "",
          "balance": "22,027.00"
        },
        {
          "date": "02/04",
          "description": "Check No. 2345",
          "withdrawal": "",
          "deposit": "450.00",
          "balance": "22,477.00"
        },
        {
          "date": "02/05",
          "description": "Payroll Direct Dep 23422342 Giants",
          "withdrawal": "",
          "deposit": "2,534.65",
          "balance": "25,011.65"
        },
        {
          "date": "02/06",
          "description": "Signature POS Debit - TJP",
          "withdrawal": "84.50",
          "deposit": "",
          "balance": "24,927.15"
        },
        {
          "date": "02/07",
          "description": "Check No. 234",
          "withdrawal": "1,400.00",
          "deposit": "",
          "balance": "23,527.15"
        },
        {
          "date": "02/08",
          "description": "Check No. 342",
          "withdrawal": "",
          "deposit": "25.00",
          "balance": "23,552.15"
        },
        {
          "date": "02/09",
          "description": "FPB AutoPay***** Credit Card",
          "withdrawal": "456.02",
          "deposit": "",
          "balance": "23,096.13"
        },
        {
          "date": "02/08",
          "description": "Check No. 123",
          "withdrawal": "",
          "deposit": "25.00",
          "balance": "23,552.15"
        },
        {
          "date": "02/09",
          "description": "FPB AutoPay***** Credit Card",
          "withdrawal": "156.02",
          "deposit": "",
          "balance": "23,096.13"
        },
        {
          "date": "02/08",
          "description": "Cash Deposit",
          "withdrawal": "",
          "deposit": "25.00",
          "balance": "23,552.15"
        }
    ],
    "valid": "true"
}


def run_inference(image_filepath, query, key):
    if image_filepath is None:
        return {"error": f"No image provided. Please upload an image before submitting."}

    if query is None or query.strip() == "":
        return {"error": f"No query provided. Please enter a query before submitting."}

    if key is None or key.strip() == "":
        return {"error": f"No Sparrow Key provided. Please enter a Sparrow Key before submitting."}

    file_path = None
    try:
        # Open the uploaded image using its filepath
        img = Image.open(image_filepath)

        # Extract the file extension from the uploaded file
        input_image_extension = image_filepath.split('.')[-1].lower()  # Extract extension from filepath

        # Set file extension based on the original file, otherwise default to PNG
        if input_image_extension in ['jpg', 'jpeg', 'png']:
            file_extension = input_image_extension
        else:
            file_extension = 'png'  # Default to PNG if extension is unavailable or invalid

        # Generate a unique filename using timestamp
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"image_{timestamp}.{file_extension}"

        # Save the image
        img.save(filename)

        # Get the full path of the saved image
        file_path = os.path.abspath(filename)

        # Prepare the REST API call
        url = 'https://katanaml-sparrow-ml.hf.space/api/v1/sparrow-llm/inference'
        headers = {
            'accept': 'application/json'
        }

        # Open the file in binary mode and send it
        with open(filename, "rb") as f:
            files = {
                'file': (filename, f, f'image/{file_extension}')
            }

            # Convert 'query' input to JSON string if needed
            try:
                # Check if the query is a wildcard '*'
                if query.strip() == "*":
                    query_json = "*"  # Directly use the wildcard as valid input
                else:
                    # Attempt to parse the query as JSON
                    query_json = json.loads(query)  # This could return any valid JSON (string, number, etc.)

                    # Ensure the parsed query is either a JSON object (dict) or a list of JSON objects
                    if not isinstance(query_json, (dict, list)):
                        return {
                            "error": "Invalid input. Only JSON objects, arrays of objects, or wildcard '*' are allowed."}

                    # If it's a list, make sure it's a list of JSON objects
                    if isinstance(query_json, list):
                        if not all(isinstance(item, dict) for item in query_json):
                            return {"error": "Invalid input. Arrays must contain only JSON objects."}

            except json.JSONDecodeError:
                return {"error": "Invalid JSON format in query input"}

            data = {
                'group_by_rows': '',
                'agent': 'sparrow-parse',
                'keywords': '',
                'sparrow_key': key,
                'update_targets': '',
                'debug': 'false',
                'index_name': '',
                'types': '',
                'fields': query_json if query_json == "*" else json.dumps(query_json),  # Use wildcard as-is, or JSON
                'options': 'huggingface,katanaml/sparrow-qwen2-vl-7b'
            }

            # Perform the POST request
            response = requests.post(url, headers=headers, files=files, data=data)

            # Process the response and return the JSON data
            if response.status_code == 200:
                return response.json()
            else:
                return {"error": f"Request failed with status code {response.status_code}", "details": response.text}
    finally:
        # Clean up the temporary file
        if os.path.exists(file_path):
            os.remove(file_path)


def handle_example(example_image):
    # Find the corresponding entry in the examples array
    for example in examples:
        if example[0] == example_image:
            # Return bonds_json if Bonds table is selected
            if example_image == "bonds_table.png":
                return example_image, bonds_json, example[2]
            # Return lab_results_json if Lab results is selected
            elif example_image == "lab_results.png":
                return example_image, lab_results_json, example[2]
            # Return bank_statement_json if Bank statement is selected
            elif example_image == "bank_statement.png":
                return example_image, bank_statement_json, example[2]

    # Default return if no match found
    return None, "No example selected.", ""


# Define the UI
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    with gr.Tab(label="Sparrow UI"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Document Image", type="filepath")
                query_input = gr.Textbox(label="Query", placeholder="Use * to query all data or JSON schema, e.g.: [{\"instrument_name\": \"str\"}]")
                key_input = gr.Textbox(label="Sparrow Key", type="password")
                submit_btn = gr.Button(value="Submit", variant="primary")

                # Radio button for selecting examples
                example_radio = gr.Radio(label="Select Example", choices=[ex[0] for ex in examples])

            with gr.Column():
                # JSON output for structured JSON display
                output_json = gr.JSON(label="Response (JSON)", height=900, min_height=900)


        # Function to handle example selection
        def on_example_select(selected_example):
            # Handle example selection and return the image, output (text or JSON), and query
            return handle_example(selected_example)


        # Update image, output JSON, and query when an example is selected
        example_radio.change(on_example_select,
                             inputs=example_radio,
                             outputs=[input_img, output_json, query_input])

        # When submit is clicked
        submit_btn.click(run_inference, [input_img, query_input, key_input], [output_json])

        gr.Markdown(
            """
            ---
            <p style="text-align: center;">
            Visit <a href="https://katanaml.io/" target="_blank">Katana ML</a> for more details.
            </p>
            """
        )

# Launch the app
demo.queue(api_open=False)
demo.launch(debug=True)