sparrow-ui / app.py
katanaml's picture
UI shell
a461c7e
raw
history blame
13.2 kB
import gradio as gr
import requests
import os
from PIL import Image
import json
from datetime import datetime
# Example data with placeholder JSON for lab_results and bank_statement
examples = [
["bonds_table.png", "Bonds table", "[{\"instrument_name\":\"example\", \"valuation\":0}]"],
["lab_results.png", "Lab results", "{\"patient_name\": \"example\", \"patient_age\": \"example\", \"patient_pid\": 0, \"lab_results\": [{\"investigation\": \"example\", \"result\": 0.00, \"reference_value\": \"example\", \"unit\": \"example\"}]}"],
["bank_statement.png", "Bank statement", "*"]
]
# JSON data for Bonds table
bonds_json = [
{
"instrument_name": "UNITS BLACKROCK FIX INC DUB FDS PLC ISHS EUR INV GRD CP BD IDX/INST/E",
"valuation": 19049
},
{
"instrument_name": "UNITS ISHARES III PLC CORE EUR GOVT BOND UCITS ETF/EUR",
"valuation": 83488
},
{
"instrument_name": "UNITS ISHARES III PLC EUR CORP BOND 1-5YR UCITS ETF/EUR",
"valuation": 213030
},
{
"instrument_name": "UNIT ISHARES VI PLC/JP MORGAN USD E BOND EUR HED UCITS ETF DIST/HDGD/",
"valuation": 32774
},
{
"instrument_name": "UNITS XTRACKERS II SICAV/EUR HY CORP BOND UCITS ETF/-1D-/DISTR.",
"valuation": 23643
}
]
lab_results_json = {
"patient_name": "Yash M. Patel",
"patient_age": "21 Years",
"patient_pid": 555,
"lab_results": [
{
"investigation": "Hemoglobin (Hb)",
"result": 12.5,
"reference_value": "13.0 - 17.0",
"unit": "g/dL"
},
{
"investigation": "RBC COUNT",
"result": 5.2,
"reference_value": "4.5 - 5.5",
"unit": "mill/cumm"
},
{
"investigation": "Packed Cell Volume (PCV)",
"result": 57.5,
"reference_value": "40 - 50",
"unit": "%"
},
{
"investigation": "Mean Corpuscular Volume (MCV)",
"result": 87.75,
"reference_value": "83 - 101",
"unit": "fL"
},
{
"investigation": "MCH",
"result": 27.2,
"reference_value": "27 - 32",
"unit": "pg"
},
{
"investigation": "MCHC",
"result": 32.8,
"reference_value": "32.5 - 34.5",
"unit": "g/dL"
},
{
"investigation": "RDW",
"result": 13.6,
"reference_value": "11.6 - 14.0",
"unit": "%"
},
{
"investigation": "WBC COUNT",
"result": 9000,
"reference_value": "4000-11000",
"unit": "cumm"
},
{
"investigation": "Neutrophils",
"result": 60,
"reference_value": "50 - 62",
"unit": "%"
},
{
"investigation": "Lymphocytes",
"result": 31,
"reference_value": "20 - 40",
"unit": "%"
},
{
"investigation": "Eosinophils",
"result": 1,
"reference_value": "00 - 06",
"unit": "%"
},
{
"investigation": "Monocytes",
"result": 7,
"reference_value": "00 - 10",
"unit": "%"
},
{
"investigation": "Basophils",
"result": 1,
"reference_value": "00 - 02",
"unit": "%"
},
{
"investigation": "Absolute Neutrophils",
"result": 6000,
"reference_value": "1500 - 7500",
"unit": "cells/mcL"
},
{
"investigation": "Absolute Lymphocytes",
"result": 3100,
"reference_value": "1300 - 3500",
"unit": "cells/mcL"
},
{
"investigation": "Absolute Eosinophils",
"result": 100,
"reference_value": "00 - 500",
"unit": "cells/mcL"
},
{
"investigation": "Absolute Monocytes",
"result": 700,
"reference_value": "200 - 950",
"unit": "cells/mcL"
},
{
"investigation": "Absolute Basophils",
"result": 100,
"reference_value": "00 - 300",
"unit": "cells/mcL"
},
{
"investigation": "Platelet Count",
"result": 320000,
"reference_value": "150000 - 410000",
"unit": "cumm"
}
]
}
bank_statement_json = {
"bank": "First Platypus Bank",
"address": "1234 Kings St., New York, NY 12123",
"account_holder": "Mary G. Orta",
"account_number": "1234567890123",
"statement_date": "3/1/2022",
"period_covered": "2/1/2022 - 3/1/2022",
"account_summary": {
"balance_on_march_1": "$25,032.23",
"total_money_in": "$10,234.23",
"total_money_out": "$10,532.51"
},
"transactions": [
{
"date": "02/01",
"description": "PGD EasyPay Debit",
"withdrawal": "203.24",
"deposit": "",
"balance": "22,098.23"
},
{
"date": "02/02",
"description": "AB&B Online Payment*****",
"withdrawal": "71.23",
"deposit": "",
"balance": "22,027.00"
},
{
"date": "02/04",
"description": "Check No. 2345",
"withdrawal": "",
"deposit": "450.00",
"balance": "22,477.00"
},
{
"date": "02/05",
"description": "Payroll Direct Dep 23422342 Giants",
"withdrawal": "",
"deposit": "2,534.65",
"balance": "25,011.65"
},
{
"date": "02/06",
"description": "Signature POS Debit - TJP",
"withdrawal": "84.50",
"deposit": "",
"balance": "24,927.15"
},
{
"date": "02/07",
"description": "Check No. 234",
"withdrawal": "1,400.00",
"deposit": "",
"balance": "23,527.15"
},
{
"date": "02/08",
"description": "Check No. 342",
"withdrawal": "",
"deposit": "25.00",
"balance": "23,552.15"
},
{
"date": "02/09",
"description": "FPB AutoPay***** Credit Card",
"withdrawal": "456.02",
"deposit": "",
"balance": "23,096.13"
},
{
"date": "02/08",
"description": "Check No. 123",
"withdrawal": "",
"deposit": "25.00",
"balance": "23,552.15"
},
{
"date": "02/09",
"description": "FPB AutoPay***** Credit Card",
"withdrawal": "156.02",
"deposit": "",
"balance": "23,096.13"
},
{
"date": "02/08",
"description": "Cash Deposit",
"withdrawal": "",
"deposit": "25.00",
"balance": "23,552.15"
}
]
}
def run_inference(image_filepath, query, key):
if image_filepath is None:
return {"error": f"No image provided. Please upload an image before submitting."}
if query is None or query.strip() == "":
return {"error": f"No query provided. Please enter a query before submitting."}
if key is None or key.strip() == "":
return {"error": f"No Sparrow Key provided. Please enter a Sparrow Key before submitting."}
file_path = None
try:
# Open the uploaded image using its filepath
img = Image.open(image_filepath)
# Extract the file extension from the uploaded file
input_image_extension = image_filepath.split('.')[-1].lower() # Extract extension from filepath
# Set file extension based on the original file, otherwise default to PNG
if input_image_extension in ['jpg', 'jpeg', 'png']:
file_extension = input_image_extension
else:
file_extension = 'png' # Default to PNG if extension is unavailable or invalid
# Generate a unique filename using timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.{file_extension}"
# Save the image
img.save(filename)
# Get the full path of the saved image
file_path = os.path.abspath(filename)
# Prepare the REST API call
url = 'https://katanaml-sparrow-ml.hf.space/api/v1/sparrow-llm/inference'
headers = {
'accept': 'application/json'
}
# Open the file in binary mode and send it
with open(filename, "rb") as f:
files = {
'file': (filename, f, f'image/{file_extension}')
}
# Convert 'query' input to JSON string if needed
try:
# Check if the query is a wildcard '*'
if query.strip() == "*":
query_json = "*" # Directly use the wildcard as valid input
else:
# Attempt to parse the query as JSON
query_json = json.loads(query) # This could return any valid JSON (string, number, etc.)
# Ensure the parsed query is either a JSON object (dict) or a list of JSON objects
if not isinstance(query_json, (dict, list)):
return {
"error": "Invalid input. Only JSON objects, arrays of objects, or wildcard '*' are allowed."}
# If it's a list, make sure it's a list of JSON objects
if isinstance(query_json, list):
if not all(isinstance(item, dict) for item in query_json):
return {"error": "Invalid input. Arrays must contain only JSON objects."}
except json.JSONDecodeError:
return {"error": "Invalid JSON format in query input"}
data = {
'group_by_rows': '',
'agent': 'sparrow-parse',
'keywords': '',
'sparrow_key': key,
'update_targets': '',
'debug': 'false',
'index_name': '',
'types': '',
'fields': query_json if query_json == "*" else json.dumps(query_json), # Use wildcard as-is, or JSON
'options': 'huggingface,katanaml/sparrow-qwen2-vl-7b'
}
# Perform the POST request
response = requests.post(url, headers=headers, files=files, data=data)
# Process the response and return the JSON data
if response.status_code == 200:
return response.json()
else:
return {"error": f"Request failed with status code {response.status_code}", "details": response.text}
finally:
# Clean up the temporary file
if os.path.exists(file_path):
os.remove(file_path)
def handle_example(example_image):
# Find the corresponding entry in the examples array
for example in examples:
if example[0] == example_image:
# Return bonds_json if Bonds table is selected
if example_image == "bonds_table.png":
return example_image, bonds_json, example[2]
# Return lab_results_json if Lab results is selected
elif example_image == "lab_results.png":
return example_image, lab_results_json, example[2]
# Return bank_statement_json if Bank statement is selected
elif example_image == "bank_statement.png":
return example_image, bank_statement_json, example[2]
# Default return if no match found
return None, "No example selected.", ""
# Define the UI
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
with gr.Tab(label="Sparrow UI"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Document Image", type="filepath")
query_input = gr.Textbox(label="Query", placeholder="Use * to query all data or JSON schema, e.g.: [{\"instrument_name\": \"example\"}]")
key_input = gr.Textbox(label="Sparrow Key", type="password")
submit_btn = gr.Button(value="Submit", variant="primary")
# Radio button for selecting examples
example_radio = gr.Radio(label="Select Example", choices=[ex[0] for ex in examples])
with gr.Column():
# JSON output for structured JSON display
output_json = gr.JSON(label="Response (JSON)", height=900, min_height=900)
# Function to handle example selection
def on_example_select(selected_example):
# Handle example selection and return the image, output (text or JSON), and query
return handle_example(selected_example)
# Update image, output JSON, and query when an example is selected
example_radio.change(on_example_select,
inputs=example_radio,
outputs=[input_img, output_json, query_input])
# When submit is clicked
submit_btn.click(run_inference, [input_img, query_input, key_input], [output_json])
gr.Markdown(
"""
---
<p style="text-align: center;">
Visit <a href="https://katanaml.io/" target="_blank">Katana ML</a> for more details.
</p>
"""
)
# Launch the app
demo.queue(api_open=False)
demo.launch(debug=True)