medclip-roco / app.py
kaushalya's picture
Fix loading the text model
a269b46
import os
import token
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from transformers import CLIPProcessor, AutoTokenizer
from medclip.modeling_hybrid_clip import FlaxHybridCLIP
@st.cache_resource
def load_model():
model = FlaxHybridCLIP.from_pretrained("flax-community/medclip-roco", _do_init=True)
tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased')
return model, tokenizer
@st.cache_resource
def load_image_embeddings():
embeddings_df = pd.read_hdf('feature_store/image_embeddings_large.hdf', key='emb')
image_embeds = np.stack(embeddings_df['image_embedding'])
image_files = np.asarray(embeddings_df['files'].tolist())
return image_files, image_embeds
k = 5
img_dir = './images'
st.sidebar.header("MedCLIP")
st.sidebar.image("./assets/logo.png", width=100)
st.sidebar.empty()
st.sidebar.markdown("""Search for medical images with natural language powered by a CLIP model [[Model Card]](https://huggingface.co/flax-community/medclip-roco) finetuned on the
[Radiology Objects in COntext (ROCO) dataset](https://github.com/razorx89/roco-dataset).""")
st.sidebar.markdown("Example queries:")
# * `ultrasound scans`πŸ”
# * `pathology`πŸ”
# * `pancreatic carcinoma`πŸ”
# * `PET scan`πŸ”""")
ex1_button = st.sidebar.button("πŸ” pathology")
ex2_button = st.sidebar.button("πŸ” ultrasound scans")
ex3_button = st.sidebar.button("πŸ” pancreatic carcinoma")
ex4_button = st.sidebar.button("πŸ” PET scan")
k_slider = st.sidebar.slider("Number of images", min_value=1, max_value=10, value=5)
st.sidebar.markdown("Kaushalya Madhawa, 2021")
st.title("MedCLIP 🩺")
# st.image("./assets/logo.png", width=100)
# st.markdown("""Search for medical images with natural language powered by a CLIP model [[Model Card]](https://huggingface.co/flax-community/medclip-roco) finetuned on the
# [Radiology Objects in COntext (ROCO) dataset](https://github.com/razorx89/roco-dataset).""")
# st.markdown("""Example queries:
# * `ultrasound scans`πŸ”
# * `pathology`πŸ”
# * `pancreatic carcinoma`πŸ”
# * `PET scan`πŸ”""")
text_value = ''
if ex1_button:
text_value = 'pathology'
elif ex2_button:
text_value = 'ultrasound scans'
elif ex3_button:
text_value = 'pancreatic carcinoma'
elif ex4_button:
text_value = 'PET scan'
image_list, image_embeddings = load_image_embeddings()
model, tokenizer = load_model()
query = st.text_input("Enter your query here:", value=text_value)
dot_prod = None
if len(query)==0:
query = text_value
if st.button("Search") or k_slider:
if len(query)==0:
st.write("Please enter a valid search query")
else:
with st.spinner(f"Searching ROCO test set for {query}..."):
k = k_slider
inputs = tokenizer(text=[query], return_tensors="jax", padding=True)
# st.write(f"Query inputs: {inputs}")
query_embedding = model.get_text_features(**inputs)
query_embedding = np.asarray(query_embedding)
query_embedding = query_embedding / np.linalg.norm(query_embedding, axis=-1, keepdims=True)
dot_prod = np.sum(np.multiply(query_embedding, image_embeddings), axis=1)
topk_images = dot_prod.argsort()[-k:]
matching_images = image_list[topk_images]
top_scores = 1. - dot_prod[topk_images]
#show images
for img_path, score in zip(matching_images, top_scores):
img = plt.imread(os.path.join(img_dir, img_path))
st.image(img, width=300)
st.write(f"{img_path} ({score:.2f})")