Spaces:
Running
Running
import os | |
import token | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from transformers import CLIPProcessor, AutoTokenizer | |
from medclip.modeling_hybrid_clip import FlaxHybridCLIP | |
def load_model(): | |
model = FlaxHybridCLIP.from_pretrained("flax-community/medclip-roco", _do_init=True) | |
tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased') | |
return model, tokenizer | |
def load_image_embeddings(): | |
embeddings_df = pd.read_hdf('feature_store/image_embeddings_large.hdf', key='emb') | |
image_embeds = np.stack(embeddings_df['image_embedding']) | |
image_files = np.asarray(embeddings_df['files'].tolist()) | |
return image_files, image_embeds | |
k = 5 | |
img_dir = './images' | |
st.sidebar.header("MedCLIP") | |
st.sidebar.image("./assets/logo.png", width=100) | |
st.sidebar.empty() | |
st.sidebar.markdown("""Search for medical images with natural language powered by a CLIP model [[Model Card]](https://huggingface.co/flax-community/medclip-roco) finetuned on the | |
[Radiology Objects in COntext (ROCO) dataset](https://github.com/razorx89/roco-dataset).""") | |
st.sidebar.markdown("Example queries:") | |
# * `ultrasound scans`π | |
# * `pathology`π | |
# * `pancreatic carcinoma`π | |
# * `PET scan`π""") | |
ex1_button = st.sidebar.button("π pathology") | |
ex2_button = st.sidebar.button("π ultrasound scans") | |
ex3_button = st.sidebar.button("π pancreatic carcinoma") | |
ex4_button = st.sidebar.button("π PET scan") | |
k_slider = st.sidebar.slider("Number of images", min_value=1, max_value=10, value=5) | |
st.sidebar.markdown("Kaushalya Madhawa, 2021") | |
st.title("MedCLIP π©Ί") | |
# st.image("./assets/logo.png", width=100) | |
# st.markdown("""Search for medical images with natural language powered by a CLIP model [[Model Card]](https://huggingface.co/flax-community/medclip-roco) finetuned on the | |
# [Radiology Objects in COntext (ROCO) dataset](https://github.com/razorx89/roco-dataset).""") | |
# st.markdown("""Example queries: | |
# * `ultrasound scans`π | |
# * `pathology`π | |
# * `pancreatic carcinoma`π | |
# * `PET scan`π""") | |
text_value = '' | |
if ex1_button: | |
text_value = 'pathology' | |
elif ex2_button: | |
text_value = 'ultrasound scans' | |
elif ex3_button: | |
text_value = 'pancreatic carcinoma' | |
elif ex4_button: | |
text_value = 'PET scan' | |
image_list, image_embeddings = load_image_embeddings() | |
model, tokenizer = load_model() | |
query = st.text_input("Enter your query here:", value=text_value) | |
dot_prod = None | |
if len(query)==0: | |
query = text_value | |
if st.button("Search") or k_slider: | |
if len(query)==0: | |
st.write("Please enter a valid search query") | |
else: | |
with st.spinner(f"Searching ROCO test set for {query}..."): | |
k = k_slider | |
inputs = tokenizer(text=[query], return_tensors="jax", padding=True) | |
# st.write(f"Query inputs: {inputs}") | |
query_embedding = model.get_text_features(**inputs) | |
query_embedding = np.asarray(query_embedding) | |
query_embedding = query_embedding / np.linalg.norm(query_embedding, axis=-1, keepdims=True) | |
dot_prod = np.sum(np.multiply(query_embedding, image_embeddings), axis=1) | |
topk_images = dot_prod.argsort()[-k:] | |
matching_images = image_list[topk_images] | |
top_scores = 1. - dot_prod[topk_images] | |
#show images | |
for img_path, score in zip(matching_images, top_scores): | |
img = plt.imread(os.path.join(img_dir, img_path)) | |
st.image(img, width=300) | |
st.write(f"{img_path} ({score:.2f})") | |