Spaces:
Running
Running
Add basic search functionality
Browse files- .gitignore +1 -0
- app.py +33 -1
- image_embeddings.pkl +0 -0
- medclip/__init__.py +0 -0
- medclip/configuration_hybrid_clip.py +112 -0
- medclip/modeling_hybrid_clip.py +420 -0
- requirements.txt +9 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
medclip/__pycache__/*
|
app.py
CHANGED
@@ -1,6 +1,38 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
query = st.text_input("Search:")
|
4 |
|
5 |
if st.button("Search"):
|
6 |
-
st.write(f"Searching our image database for {query}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoTokenizer, CLIPProcessor, ViTFeatureExtractor
|
5 |
+
from medclip.modeling_hybrid_clip import FlaxHybridCLIP
|
6 |
+
|
7 |
+
@st.cache(allow_output_mutation=True)
|
8 |
+
def load_model():
|
9 |
+
model = FlaxHybridCLIP.from_pretrained("flax-community/medclip-roco")
|
10 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
11 |
+
return model, processor
|
12 |
+
|
13 |
+
@st.cache(allow_output_mutation=True)
|
14 |
+
def load_image_embeddings():
|
15 |
+
embeddings_df = pd.read_pickle('image_embeddings.pkl')
|
16 |
+
image_embeds = np.stack(embeddings_df['image_embedding'])
|
17 |
+
image_files = np.asarray(embeddings_df['files'].tolist())
|
18 |
+
return image_files, image_embeds
|
19 |
+
|
20 |
+
# def app():
|
21 |
+
k = 5
|
22 |
+
image_list, image_embeddings = load_image_embeddings()
|
23 |
+
model, processor = load_model()
|
24 |
|
25 |
query = st.text_input("Search:")
|
26 |
|
27 |
if st.button("Search"):
|
28 |
+
st.write(f"Searching our image database for {query}...")
|
29 |
+
|
30 |
+
inputs = processor(text=[query], images=None, return_tensors="jax", padding=True)
|
31 |
+
|
32 |
+
query_embedding = model.get_text_features(**inputs)
|
33 |
+
query_embedding = np.asarray(query_embedding)
|
34 |
+
query_embedding = query_embedding / np.linalg.norm(query_embedding, axis=-1, keepdims=True)
|
35 |
+
dot_prod = np.sum(np.multiply(query_embedding, image_embeddings), axis=1)
|
36 |
+
matching_images = image_list[dot_prod.argsort()[-k:]]
|
37 |
+
st.write(f"matching images: {matching_images}")
|
38 |
+
|
image_embeddings.pkl
ADDED
Binary file (930 kB). View file
|
|
medclip/__init__.py
ADDED
File without changes
|
medclip/configuration_hybrid_clip.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class HybridCLIPConfig(PretrainedConfig):
|
11 |
+
r"""
|
12 |
+
:class:`HybridCLIPConfig` is the configuration class to store the configuration of a
|
13 |
+
:class:`~HybridCLIPModel`. It is used to instantiate HybridCLIPModel model according to the specified arguments,
|
14 |
+
defining the text model and vision model configs.
|
15 |
+
|
16 |
+
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
17 |
+
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
text_config_dict (:obj:`dict`):
|
21 |
+
Dictionary of configuration options that defines text model config.
|
22 |
+
vision_config_dict (:obj:`dict`):
|
23 |
+
Dictionary of configuration options that defines vison model config.
|
24 |
+
projection_dim (:obj:`int`, `optional`, defaults to 512):
|
25 |
+
Dimentionality of text and vision projection layers.
|
26 |
+
kwargs (`optional`):
|
27 |
+
Dictionary of keyword arguments.
|
28 |
+
|
29 |
+
Examples::
|
30 |
+
|
31 |
+
>>> from transformers import BertConfig, CLIPConfig, HybridCLIPConfig, FlaxHybridCLIP
|
32 |
+
|
33 |
+
>>> # Initializing a BERT and CLIP configuration
|
34 |
+
>>> config_text = BertConfig()
|
35 |
+
>>> config_vision = CLIPConfig()
|
36 |
+
|
37 |
+
>>> config = HybridCLIPConfig.from_text_vision_configs(config_text, config_vision, projection_dim=512)
|
38 |
+
|
39 |
+
>>> # Initializing a BERT and CLIPVision model
|
40 |
+
>>> model = EncoderDecoderModel(config=config)
|
41 |
+
|
42 |
+
>>> # Accessing the model configuration
|
43 |
+
>>> config_text = model.config.text_config
|
44 |
+
>>> config_vision = model.config.vision_config
|
45 |
+
|
46 |
+
>>> # Saving the model, including its configuration
|
47 |
+
>>> model.save_pretrained('my-model')
|
48 |
+
|
49 |
+
>>> # loading model and config from pretrained folder
|
50 |
+
>>> encoder_decoder_config = HybridCLIPConfig.from_pretrained('my-model')
|
51 |
+
>>> model = FlaxHybridCLIP.from_pretrained('my-model', config=encoder_decoder_config)
|
52 |
+
"""
|
53 |
+
|
54 |
+
model_type = "hybrid-clip"
|
55 |
+
is_composition = True
|
56 |
+
|
57 |
+
def __init__(self, projection_dim=512, **kwargs):
|
58 |
+
super().__init__(**kwargs)
|
59 |
+
|
60 |
+
if "text_config" not in kwargs:
|
61 |
+
raise ValueError("`text_config` can not be `None`.")
|
62 |
+
|
63 |
+
if "vision_config" not in kwargs:
|
64 |
+
raise ValueError("`vision_config` can not be `None`.")
|
65 |
+
|
66 |
+
text_config = kwargs.pop("text_config")
|
67 |
+
vision_config = kwargs.pop("vision_config")
|
68 |
+
|
69 |
+
text_model_type = text_config.pop("model_type")
|
70 |
+
vision_model_type = vision_config.pop("model_type")
|
71 |
+
|
72 |
+
from transformers import AutoConfig
|
73 |
+
|
74 |
+
self.text_config = AutoConfig.for_model(text_model_type, **text_config)
|
75 |
+
|
76 |
+
if vision_model_type == "clip":
|
77 |
+
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config).vision_config
|
78 |
+
elif vision_model_type == "clip_vision_model":
|
79 |
+
from transformers import CLIPVisionConfig
|
80 |
+
|
81 |
+
self.vision_config = CLIPVisionConfig(**vision_config)
|
82 |
+
else:
|
83 |
+
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config)
|
84 |
+
|
85 |
+
self.projection_dim = projection_dim
|
86 |
+
self.initializer_factor = 1.0
|
87 |
+
|
88 |
+
@classmethod
|
89 |
+
def from_text_vision_configs(cls, text_config: PretrainedConfig, vision_config: PretrainedConfig, **kwargs):
|
90 |
+
r"""
|
91 |
+
Instantiate a :class:`HybridCLIPConfig` (or a derived class) from text model configuration and
|
92 |
+
vision model configuration.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
:class:`HybridCLIPConfig`: An instance of a configuration object
|
96 |
+
"""
|
97 |
+
|
98 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
99 |
+
|
100 |
+
def to_dict(self):
|
101 |
+
"""
|
102 |
+
Serializes this instance to a Python dictionary. Override the default
|
103 |
+
:meth:`~transformers.PretrainedConfig.to_dict`.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
107 |
+
"""
|
108 |
+
output = copy.deepcopy(self.__dict__)
|
109 |
+
output["text_config"] = self.text_config.to_dict()
|
110 |
+
output["vision_config"] = self.vision_config.to_dict()
|
111 |
+
output["model_type"] = self.__class__.model_type
|
112 |
+
return output
|
medclip/modeling_hybrid_clip.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import flax.linen as nn
|
19 |
+
import jax
|
20 |
+
import jax.numpy as jnp
|
21 |
+
from medclip.configuration_hybrid_clip import HybridCLIPConfig
|
22 |
+
from flax.core.frozen_dict import FrozenDict
|
23 |
+
from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel
|
24 |
+
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
25 |
+
from transformers.models.clip.modeling_flax_clip import FlaxCLIPOutput
|
26 |
+
from transformers.utils import logging
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class FlaxHybridCLIPModule(nn.Module):
|
33 |
+
config: HybridCLIPConfig
|
34 |
+
dtype: jnp.dtype = jnp.float32
|
35 |
+
|
36 |
+
def setup(self):
|
37 |
+
text_config = self.config.text_config
|
38 |
+
vision_config = self.config.vision_config
|
39 |
+
|
40 |
+
self.projection_dim = self.config.projection_dim
|
41 |
+
self.text_embed_dim = text_config.hidden_size
|
42 |
+
self.vision_embed_dim = vision_config.hidden_size
|
43 |
+
|
44 |
+
text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class
|
45 |
+
vision_module = FLAX_MODEL_MAPPING.get(self.config.vision_config.__class__, FlaxCLIPVisionModel).module_class
|
46 |
+
|
47 |
+
self.text_model = text_module(text_config, dtype=self.dtype)
|
48 |
+
self.vision_model = vision_module(vision_config, dtype=self.dtype)
|
49 |
+
|
50 |
+
self.visual_projection = nn.Dense(
|
51 |
+
self.projection_dim,
|
52 |
+
dtype=self.dtype,
|
53 |
+
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
|
54 |
+
use_bias=False,
|
55 |
+
)
|
56 |
+
self.text_projection = nn.Dense(
|
57 |
+
self.projection_dim,
|
58 |
+
dtype=self.dtype,
|
59 |
+
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
|
60 |
+
use_bias=False,
|
61 |
+
)
|
62 |
+
self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, [])
|
63 |
+
|
64 |
+
def __call__(
|
65 |
+
self,
|
66 |
+
input_ids=None,
|
67 |
+
pixel_values=None,
|
68 |
+
attention_mask=None,
|
69 |
+
position_ids=None,
|
70 |
+
token_type_ids=None,
|
71 |
+
deterministic: bool = True,
|
72 |
+
output_attentions=None,
|
73 |
+
output_hidden_states=None,
|
74 |
+
return_dict=None,
|
75 |
+
):
|
76 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
77 |
+
|
78 |
+
vision_outputs = self.vision_model(
|
79 |
+
pixel_values=pixel_values,
|
80 |
+
deterministic=deterministic,
|
81 |
+
output_attentions=output_attentions,
|
82 |
+
output_hidden_states=output_hidden_states,
|
83 |
+
return_dict=return_dict,
|
84 |
+
)
|
85 |
+
|
86 |
+
text_outputs = self.text_model(
|
87 |
+
input_ids=input_ids,
|
88 |
+
attention_mask=attention_mask,
|
89 |
+
token_type_ids=token_type_ids,
|
90 |
+
position_ids=position_ids,
|
91 |
+
deterministic=deterministic,
|
92 |
+
output_attentions=output_attentions,
|
93 |
+
output_hidden_states=output_hidden_states,
|
94 |
+
return_dict=return_dict,
|
95 |
+
)
|
96 |
+
|
97 |
+
image_embeds = vision_outputs[1]
|
98 |
+
image_embeds = self.visual_projection(image_embeds)
|
99 |
+
|
100 |
+
text_embeds = text_outputs[1]
|
101 |
+
text_embeds = self.text_projection(text_embeds)
|
102 |
+
|
103 |
+
# normalized features
|
104 |
+
image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True)
|
105 |
+
text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)
|
106 |
+
|
107 |
+
# cosine similarity as logits
|
108 |
+
logit_scale = jnp.exp(self.logit_scale)
|
109 |
+
logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
|
110 |
+
logits_per_image = logits_per_text.T
|
111 |
+
|
112 |
+
if not return_dict:
|
113 |
+
return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
114 |
+
|
115 |
+
return FlaxCLIPOutput(
|
116 |
+
logits_per_image=logits_per_image,
|
117 |
+
logits_per_text=logits_per_text,
|
118 |
+
text_embeds=text_embeds,
|
119 |
+
image_embeds=image_embeds,
|
120 |
+
text_model_output=text_outputs,
|
121 |
+
vision_model_output=vision_outputs,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
class FlaxHybridCLIP(FlaxPreTrainedModel):
|
126 |
+
config_class = HybridCLIPConfig
|
127 |
+
module_class = FlaxHybridCLIPModule
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
config: HybridCLIPConfig,
|
132 |
+
input_shape: Optional[Tuple] = None,
|
133 |
+
seed: int = 0,
|
134 |
+
dtype: jnp.dtype = jnp.float32,
|
135 |
+
**kwargs
|
136 |
+
):
|
137 |
+
if input_shape is None:
|
138 |
+
input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3))
|
139 |
+
|
140 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
141 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
|
142 |
+
|
143 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
144 |
+
# init input tensor
|
145 |
+
input_ids = jnp.zeros(input_shape[0], dtype="i4")
|
146 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0])
|
147 |
+
token_type_ids = jnp.ones_like(input_ids)
|
148 |
+
attention_mask = jnp.ones_like(input_ids)
|
149 |
+
|
150 |
+
pixel_values = jax.random.normal(rng, input_shape[1])
|
151 |
+
|
152 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
153 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
154 |
+
|
155 |
+
return self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids)["params"]
|
156 |
+
|
157 |
+
def __call__(
|
158 |
+
self,
|
159 |
+
input_ids,
|
160 |
+
pixel_values,
|
161 |
+
attention_mask=None,
|
162 |
+
position_ids=None,
|
163 |
+
token_type_ids=None,
|
164 |
+
params: dict = None,
|
165 |
+
dropout_rng: jax.random.PRNGKey = None,
|
166 |
+
train: bool = False,
|
167 |
+
output_attentions: Optional[bool] = None,
|
168 |
+
output_hidden_states: Optional[bool] = None,
|
169 |
+
return_dict: Optional[bool] = None,
|
170 |
+
):
|
171 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
172 |
+
output_hidden_states = (
|
173 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
174 |
+
)
|
175 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
176 |
+
|
177 |
+
if position_ids is None:
|
178 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
179 |
+
|
180 |
+
if token_type_ids is None:
|
181 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
182 |
+
|
183 |
+
if attention_mask is None:
|
184 |
+
attention_mask = jnp.ones_like(input_ids)
|
185 |
+
|
186 |
+
# Handle any PRNG if needed
|
187 |
+
rngs = {}
|
188 |
+
if dropout_rng is not None:
|
189 |
+
rngs["dropout"] = dropout_rng
|
190 |
+
|
191 |
+
return self.module.apply(
|
192 |
+
{"params": params or self.params},
|
193 |
+
jnp.array(input_ids, dtype="i4"),
|
194 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
195 |
+
jnp.array(attention_mask, dtype="i4"),
|
196 |
+
jnp.array(position_ids, dtype="i4"),
|
197 |
+
jnp.array(token_type_ids, dtype="i4"),
|
198 |
+
not train,
|
199 |
+
output_attentions,
|
200 |
+
output_hidden_states,
|
201 |
+
return_dict,
|
202 |
+
rngs=rngs,
|
203 |
+
)
|
204 |
+
|
205 |
+
def get_text_features(
|
206 |
+
self,
|
207 |
+
input_ids,
|
208 |
+
attention_mask=None,
|
209 |
+
position_ids=None,
|
210 |
+
token_type_ids=None,
|
211 |
+
dropout_rng: jax.random.PRNGKey = None,
|
212 |
+
train=False,
|
213 |
+
):
|
214 |
+
r"""
|
215 |
+
Args:
|
216 |
+
input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`):
|
217 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
218 |
+
provide it.
|
219 |
+
|
220 |
+
Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See
|
221 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
|
222 |
+
for details.
|
223 |
+
|
224 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
text_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The text embeddings
|
228 |
+
obtained by applying the projection layer to the pooled output of text model.
|
229 |
+
"""
|
230 |
+
if position_ids is None:
|
231 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
232 |
+
|
233 |
+
if token_type_ids is None:
|
234 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
235 |
+
|
236 |
+
if attention_mask is None:
|
237 |
+
attention_mask = jnp.ones_like(input_ids)
|
238 |
+
|
239 |
+
# Handle any PRNG if needed
|
240 |
+
rngs = {}
|
241 |
+
if dropout_rng is not None:
|
242 |
+
rngs["dropout"] = dropout_rng
|
243 |
+
|
244 |
+
def _get_features(module, input_ids, attention_mask, position_ids, token_type_ids, deterministic):
|
245 |
+
text_outputs = module.text_model(
|
246 |
+
input_ids=input_ids,
|
247 |
+
attention_mask=attention_mask,
|
248 |
+
position_ids=position_ids,
|
249 |
+
token_type_ids=token_type_ids,
|
250 |
+
deterministic=deterministic,
|
251 |
+
)
|
252 |
+
pooled_output = text_outputs[1]
|
253 |
+
text_features = module.text_projection(pooled_output)
|
254 |
+
return text_features
|
255 |
+
|
256 |
+
return self.module.apply(
|
257 |
+
{"params": self.params},
|
258 |
+
jnp.array(input_ids, dtype="i4"),
|
259 |
+
jnp.array(attention_mask, dtype="i4"),
|
260 |
+
jnp.array(position_ids, dtype="i4"),
|
261 |
+
jnp.array(token_type_ids, dtype="i4"),
|
262 |
+
not train,
|
263 |
+
method=_get_features,
|
264 |
+
rngs=rngs,
|
265 |
+
)
|
266 |
+
|
267 |
+
def get_image_features(self, pixel_values, dropout_rng: jax.random.PRNGKey = None, train=False):
|
268 |
+
r"""
|
269 |
+
Args:
|
270 |
+
pixel_values (:obj:`numpy.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`):
|
271 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
|
272 |
+
using :class:`~transformers.ImageFeatureExtractionMixin`. See
|
273 |
+
:meth:`transformers.ImageFeatureExtractionMixin.__call__` for details.
|
274 |
+
|
275 |
+
Returns:
|
276 |
+
image_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The image embeddings
|
277 |
+
obtained by applying the projection layer to the pooled output of vision model.
|
278 |
+
"""
|
279 |
+
|
280 |
+
# Handle any PRNG if needed
|
281 |
+
rngs = {}
|
282 |
+
if dropout_rng is not None:
|
283 |
+
rngs["dropout"] = dropout_rng
|
284 |
+
|
285 |
+
def _get_features(module, pixel_values, deterministic):
|
286 |
+
vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic)
|
287 |
+
pooled_output = vision_outputs[1] # pooled_output
|
288 |
+
image_features = module.visual_projection(pooled_output)
|
289 |
+
return image_features
|
290 |
+
|
291 |
+
return self.module.apply(
|
292 |
+
{"params": self.params},
|
293 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
294 |
+
not train,
|
295 |
+
method=_get_features,
|
296 |
+
rngs=rngs,
|
297 |
+
)
|
298 |
+
|
299 |
+
@classmethod
|
300 |
+
def from_text_vision_pretrained(
|
301 |
+
cls,
|
302 |
+
text_model_name_or_path: str = None,
|
303 |
+
vision_model_name_or_path: str = None,
|
304 |
+
*model_args,
|
305 |
+
**kwargs,
|
306 |
+
) -> FlaxPreTrainedModel:
|
307 |
+
"""
|
308 |
+
Params:
|
309 |
+
text_model_name_or_path (:obj: `str`, `optional`):
|
310 |
+
Information necessary to initiate the text model. Can be either:
|
311 |
+
|
312 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
313 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
314 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
315 |
+
- A path to a `directory` containing model weights saved using
|
316 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
317 |
+
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
|
318 |
+
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
|
319 |
+
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
|
320 |
+
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
|
321 |
+
|
322 |
+
vision_model_name_or_path (:obj: `str`, `optional`, defaults to `None`):
|
323 |
+
Information necessary to initiate the vision model. Can be either:
|
324 |
+
|
325 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
326 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
327 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
328 |
+
- A path to a `directory` containing model weights saved using
|
329 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
330 |
+
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
|
331 |
+
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
|
332 |
+
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
|
333 |
+
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
|
334 |
+
|
335 |
+
model_args (remaining positional arguments, `optional`):
|
336 |
+
All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
|
337 |
+
|
338 |
+
kwargs (remaining dictionary of keyword arguments, `optional`):
|
339 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
340 |
+
:obj:`output_attentions=True`).
|
341 |
+
|
342 |
+
- To update the text configuration, use the prefix `text_` for each configuration parameter.
|
343 |
+
- To update the vision configuration, use the prefix `vision_` for each configuration parameter.
|
344 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
345 |
+
|
346 |
+
Behaves differently depending on whether a :obj:`config` is provided or automatically loaded.
|
347 |
+
|
348 |
+
Example::
|
349 |
+
|
350 |
+
>>> from transformers import FlaxHybridCLIP
|
351 |
+
>>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized.
|
352 |
+
>>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights
|
353 |
+
>>> model = FlaxHybridCLIP.from_text_vision_pretrained('bert-base-uncased', 'openai/clip-vit-base-patch32')
|
354 |
+
>>> # saving model after fine-tuning
|
355 |
+
>>> model.save_pretrained("./bert-clip")
|
356 |
+
>>> # load fine-tuned model
|
357 |
+
>>> model = FlaxHybridCLIP.from_pretrained("./bert-clip")
|
358 |
+
"""
|
359 |
+
|
360 |
+
kwargs_text = {
|
361 |
+
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
|
362 |
+
}
|
363 |
+
|
364 |
+
kwargs_vision = {
|
365 |
+
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
|
366 |
+
}
|
367 |
+
|
368 |
+
# remove text, vision kwargs from kwargs
|
369 |
+
for key in kwargs_text.keys():
|
370 |
+
del kwargs["text_" + key]
|
371 |
+
for key in kwargs_vision.keys():
|
372 |
+
del kwargs["vision_" + key]
|
373 |
+
|
374 |
+
# Load and initialize the text and vision model
|
375 |
+
text_model = kwargs_text.pop("model", None)
|
376 |
+
if text_model is None:
|
377 |
+
assert (
|
378 |
+
text_model_name_or_path is not None
|
379 |
+
), "If `model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
|
380 |
+
from transformers import FlaxAutoModel
|
381 |
+
|
382 |
+
if "config" not in kwargs_text:
|
383 |
+
from transformers import AutoConfig
|
384 |
+
|
385 |
+
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
|
386 |
+
kwargs_text["config"] = text_config
|
387 |
+
|
388 |
+
text_model = FlaxAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
|
389 |
+
|
390 |
+
vision_model = kwargs_vision.pop("model", None)
|
391 |
+
if vision_model is None:
|
392 |
+
assert (
|
393 |
+
vision_model_name_or_path is not None
|
394 |
+
), "If `model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
|
395 |
+
from transformers import FlaxAutoModel
|
396 |
+
|
397 |
+
if "config" not in kwargs_vision:
|
398 |
+
from transformers import AutoConfig
|
399 |
+
|
400 |
+
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
|
401 |
+
kwargs_vision["config"] = vision_config
|
402 |
+
|
403 |
+
vision_model = FlaxAutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
|
404 |
+
|
405 |
+
# instantiate config with corresponding kwargs
|
406 |
+
dtype = kwargs.pop("dtype", jnp.float32)
|
407 |
+
config = HybridCLIPConfig.from_text_vision_configs(text_model.config, vision_model.config, **kwargs)
|
408 |
+
|
409 |
+
# init model
|
410 |
+
model = cls(config, *model_args, dtype=dtype, **kwargs)
|
411 |
+
|
412 |
+
if vision_config.model_type == "clip":
|
413 |
+
model.params["vision_model"]["vision_model"] = vision_model.params["vision_model"]
|
414 |
+
model.params["visual_projection"]["kernel"] = vision_model.params["visual_projection"]["kernel"]
|
415 |
+
else:
|
416 |
+
model.params["vision_model"] = vision_model.params
|
417 |
+
|
418 |
+
model.params["text_model"] = text_model.params
|
419 |
+
|
420 |
+
return model
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flax==0.3.4
|
2 |
+
huggingface-hub==0.0.12
|
3 |
+
jax==0.2.17
|
4 |
+
streamlit==0.84.1
|
5 |
+
torch==1.9.0
|
6 |
+
torchvision==0.10.0
|
7 |
+
pandas==1.3.0
|
8 |
+
transformers==4.8.2
|
9 |
+
watchdog==2.1.3
|