Spaces:
Running
Running
import gradio as gr | |
import torch | |
import pickle | |
import numpy as np | |
import pandas as pd | |
from transformers import CLIPProcessor, CLIPModel | |
from transformers import VisionTextDualEncoderModel, VisionTextDualEncoderProcessor | |
from sklearn.metrics.pairwise import cosine_similarity | |
import csv | |
from PIL import Image | |
model_path_rclip = "kaveh/rclip" | |
embeddings_file_rclip = './image_embeddings_rclip.pkl' | |
model_path_pubmedclip = "flaviagiammarino/pubmed-clip-vit-base-patch32" | |
embeddings_file_pubmedclip = './image_embeddings_pubmedclip.pkl' | |
csv_path = "./captions.txt" | |
def load_image_ids(csv_file): | |
ids = [] | |
captions = [] | |
with open(csv_file, 'r') as f: | |
reader = csv.reader(f, delimiter='\t') | |
for row in reader: | |
ids.append(row[0]) | |
captions.append(row[1]) | |
return ids, captions | |
def load_embeddings(embeddings_file): | |
with open(embeddings_file, 'rb') as f: | |
image_embeddings = pickle.load(f) | |
return image_embeddings | |
def find_similar_images(query_embedding, image_embeddings, k=2): | |
similarities = cosine_similarity(query_embedding.reshape(1, -1), image_embeddings) | |
closest_indices = np.argsort(similarities[0])[::-1][:k] | |
scores = sorted(similarities[0])[::-1][:k] | |
return closest_indices, scores | |
def main(query, model_id="rclip", k=2): | |
if model_id=="rclip": | |
# Load RCLIP model | |
model = VisionTextDualEncoderModel.from_pretrained(model_path_rclip) | |
processor = VisionTextDualEncoderProcessor.from_pretrained(model_path_rclip) | |
# Load image embeddings | |
image_embeddings = load_embeddings(embeddings_file_rclip) | |
elif mode_id=="pubmedclip": | |
model = CLIPModel.from_pretrained(model_path_pubmedclip) | |
processor = CLIPProcessor.from_pretrained(model_path_pubmedclip) | |
# Load image embeddings | |
image_embeddings = load_embeddings(embeddings_file_pubmedclip) | |
# Embed the query | |
inputs = processor(text=query, images=None, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
query_embedding = model.get_text_features(**inputs)[0].numpy() | |
# Get image names | |
ids, captions = load_image_ids(csv_path) | |
# Find similar images | |
similar_image_indices, scores = find_similar_images(query_embedding, image_embeddings, k=int(k)) | |
# Return the results | |
similar_image_names = [f"./images/{ids[index]}.jpg" for index in similar_image_indices] | |
similar_image_captions = [captions[index] for index in similar_image_indices] | |
similar_images = [Image.open(i) for i in similar_image_names] | |
return similar_images, pd.DataFrame([[t+1 for t in range(k)], similar_image_names, similar_image_captions, scores], index=["#", "path", "caption", "score"]).T | |
# Define the Gradio interface | |
examples = [ | |
["Chest X-ray photos",5], | |
["Orthopantogram (OPG)",5], | |
["Brain Scan",5], | |
["tomography",5] | |
] | |
title="RCLIP Image Retrieval" | |
description = "CLIP model fine-tuned on the ROCO dataset" | |
with gr.Blocks(title=title) as demo: | |
with gr.Row(): | |
with gr.Column(scale=5): | |
gr.Markdown("# "+title) | |
gr.Markdown(description) | |
gr.HTML(value="<img src=\"https://newresults.co.uk/wp-content/uploads/2022/02/teesside-university-logo.png\" alt=\"teesside logo\" width=\"120\" height=\"70\">", show_label=False,scale=1) | |
#Image.open("./data/teesside university logo.png"), height=70, show_label=False, container=False) | |
with gr.Column(variant="compact"): | |
with gr.Row(variant="compact"): | |
query = gr.Textbox(value="Chest X-Ray Photos", label="Enter your query", show_label=False, placeholder= "Enter your query" , scale=5) | |
btn = gr.Button("Search query", variant="primary", scale=1) | |
n_s = gr.Slider(2, 10, label='Number of Top Results', value=5, step=1.0, show_label=True) | |
with gr.Column(variant="compact"): | |
gr.Markdown("## Results") | |
gallery = gr.Gallery(label="found images", show_label=True, elem_id="gallery", columns=[2], rows=[4], object_fit="contain", height="400px", preview=True) | |
gr.Markdown("Information of the found images") | |
df = gr.DataFrame() | |
btn.click(main, [query, n_s], [gallery, df]) | |
with gr.Column(variant="compact"): | |
gr.Markdown("## Examples") | |
gr.Examples(examples, [query, n_s]) | |
demo.launch(debug='True') | |