Spaces:
Running
Running
import torch | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
import gradio as gr | |
import random | |
import tqdm | |
import spaces | |
# Enable TQDM progress tracking | |
tqdm.monitor_interval = 0 | |
# Load the diffusion pipeline | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"kayfahaarukku/UrangDiffusion-1.0", | |
torch_dtype=torch.float16, | |
custom_pipeline="lpw_stable_diffusion_xl", | |
use_safetensors=True, | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
# Function to generate an image | |
# Adjust the duration as needed | |
def generate_image(prompt, negative_prompt, use_defaults, width, height, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()): | |
pipe.to('cuda') # Move the model to GPU when the function is called | |
if randomize_seed: | |
seed = random.randint(0, 99999999) | |
if use_defaults: | |
prompt = f"{prompt}, masterpiece, best quality" | |
negative_prompt = f"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, {negative_prompt}" | |
generator = torch.manual_seed(seed) | |
def callback(step, timestep, latents): | |
progress(step / num_inference_steps) | |
return | |
image = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
callback=callback, | |
callback_steps=1 | |
).images[0] | |
torch.cuda.empty_cache() | |
pipe.to('cpu') # Move the model back to CPU after generation | |
return image, seed | |
# Define Gradio interface | |
def interface_fn(prompt, negative_prompt, use_defaults, width, height, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()): | |
image, seed = generate_image(prompt, negative_prompt, use_defaults, width, height, guidance_scale, num_inference_steps, seed, randomize_seed, progress) | |
return image, seed, gr.update(value=seed) | |
def reset_inputs(): | |
return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value=832), gr.update(value=1216), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=False) | |
with gr.Blocks(title="UrangDiffusion 1.0 Demo", theme="NoCrypt/[email protected]") as demo: | |
gr.HTML( | |
"<h1>UrangDiffusion 1.0 Demo</h1>" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt") | |
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt") | |
use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True) | |
width_input = gr.Slider(minimum=256, maximum=2048, step=32, label="Width", value=832) | |
height_input = gr.Slider(minimum=256, maximum=2048, step=32, label="Height", value=1216) | |
guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7) | |
num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28) | |
seed_input = gr.Slider(minimum=0, maximum=99999999, step=1, label="Seed", value=0, interactive=True) | |
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False) | |
generate_button = gr.Button("Generate") | |
reset_button = gr.Button("Reset") | |
with gr.Column(): | |
output_image = gr.Image(type="pil", label="Generated Image") | |
output_seed = gr.Number(label="Seed", interactive=False) | |
generate_button.click( | |
interface_fn, | |
inputs=[ | |
prompt_input, negative_prompt_input, use_defaults_input, width_input, height_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input | |
], | |
outputs=[output_image, output_seed, seed_input] | |
) | |
reset_button.click( | |
reset_inputs, | |
inputs=[], | |
outputs=[ | |
prompt_input, negative_prompt_input, use_defaults_input, width_input, height_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input | |
] | |
) | |
demo.queue(max_size=20).launch(share=True) |