import os import spaces import torch from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler import gradio as gr import random import tqdm # Enable TQDM progress tracking tqdm.monitor_interval = 0 # Load the diffusion pipeline pipe = StableDiffusionXLPipeline.from_pretrained( "kayfahaarukku/UrangDiffusion-1.0", torch_dtype=torch.float16, custom_pipeline="lpw_stable_diffusion_xl", use_safetensors=True, ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Function to generate an image @spaces.GPU() # Adjust the duration as needed def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()): pipe.to('cuda') # Move the model to GPU when the function is called if randomize_seed: seed = random.randint(0, 99999999) if use_defaults: prompt = f"{prompt}, masterpiece, best quality" negative_prompt = f"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, {negative_prompt}" generator = torch.manual_seed(seed) def callback(step, timestep, latents): progress(step / num_inference_steps) return width, height = map(int, resolution.split('x')) image = pipe( prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, callback=callback, callback_steps=1 ).images[0] torch.cuda.empty_cache() pipe.to('cpu') # Move the model back to CPU after generation return image, seed # Define Gradio interface def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()): image, seed = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress) return image, seed, gr.update(value=seed) def reset_inputs(): return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='1024x1024'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=False) with gr.Blocks(title="UrangDiffusion 1.0 Demo", theme="NoCrypt/miku@1.2.1") as demo: gr.HTML( "

UrangDiffusion 1.0 Demo

" ) with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt") negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt") use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True) resolution_input = gr.Radio( choices=[ "1024x1024", "1152x896", "896x1152", "1216x832", "832x1216", "1344x768", "768x1344", "1536x640", "640x1536" ], label="Resolution", value="896x1152" ) guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7) num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28) seed_input = gr.Slider(minimum=0, maximum=99999999, step=1, label="Seed", value=0, interactive=True) randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False) generate_button = gr.Button("Generate") reset_button = gr.Button("Reset") with gr.Column(): output_image = gr.Image(type="pil", label="Generated Image") generate_button.click( interface_fn, inputs=[ prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input ], outputs=[output_image, seed_input] ) reset_button.click( reset_inputs, inputs=[], outputs=[ prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input ] ) demo.queue(max_size=20).launch(share=False)