import streamlit as st
import pandas as pd
import html
model_options = [
'API',
'google/gemma-1.1-2b-it',
'google/gemma-1.1-7b-it'
]
if False:
model_name = st.selectbox("Select a model", model_options + ['other'])
if model_name == 'other':
model_name = st.text_input("Enter model name", model_options[0])
else:
model_name = model_options[0]
@st.cache_resource
def get_tokenizer(model_name):
from transformers import AutoTokenizer
return AutoTokenizer.from_pretrained(model_name).from_pretrained(model_name)
@st.cache_resource
def get_model(model_name):
import torch
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto', torch_dtype=torch.bfloat16)
print(f"Loaded model, {model.num_parameters():,d} parameters.")
return model
prompt = st.text_area("Prompt", "Rewrite this document to be more clear and concise.")
doc = st.text_area("Document", placeholder="Paste your document here.")
updated_doc = st.text_area("Updated Doc", placeholder="Your edited document. Leave this blank to use your original document.")
def get_spans_local(prompt, doc, updated_doc):
import torch
tokenizer = get_tokenizer(model_name)
model = get_model(model_name)
messages = [
{
"role": "user",
"content": f"{prompt}\n\n{doc}",
},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")[0]
assert len(tokenized_chat.shape) == 1
if len(updated_doc.strip()) == 0:
updated_doc = doc
updated_doc_ids = tokenizer(updated_doc, return_tensors='pt')['input_ids'][0]
joined_ids = torch.cat([tokenized_chat, updated_doc_ids[1:]])
with torch.no_grad():
logits = model(joined_ids[None].to(model.device)).logits[0].cpu()
spans = []
length_so_far = 0
for idx in range(len(tokenized_chat), len(joined_ids)):
probs = logits[idx - 1].softmax(dim=-1)
token_id = joined_ids[idx]
token = tokenizer.decode(token_id)
token_loss = -probs[token_id].log().item()
most_likely_token_id = probs.argmax()
print(idx, token, token_loss, tokenizer.decode(most_likely_token_id))
spans.append(dict(
start=length_so_far,
end=length_so_far + len(token),
token=token,
token_loss=token_loss,
most_likely_token=tokenizer.decode(most_likely_token_id)
))
length_so_far += len(token)
return spans
def get_highlights_api(prompt, doc, updated_doc):
# Make a request to the API. prompt and doc are query parameters:
# https://tools.kenarnold.org/api/highlights?prompt=Rewrite%20this%20document&doc=This%20is%20a%20document
# The response is a JSON array
import requests
response = requests.get("https://tools.kenarnold.org/api/highlights", params=dict(prompt=prompt, doc=doc, updated_doc=updated_doc))
return response.json()['highlights']
if model_name == 'API':
spans = get_highlights_api(prompt, doc, updated_doc)
else:
spans = get_spans_local(prompt, doc, updated_doc)
if len(spans) < 2:
st.write("No spans found.")
st.stop()
highest_loss = max(span['token_loss'] for span in spans[1:])
for span in spans:
span['loss_ratio'] = span['token_loss'] / highest_loss
html_out = ''
for span in spans:
is_different = span['token'] != span['most_likely_token']
html_out += '{orig_token}'.format(
color="blue" if is_different else "black",
title=html.escape(span["most_likely_token"]).replace('\n', ' '),
orig_token=html.escape(span["token"]).replace('\n', '
')
)
html_out = f"
{html_out}
" st.write(html_out, unsafe_allow_html=True) st.write(pd.DataFrame(spans)[['token', 'token_loss', 'most_likely_token', 'loss_ratio']])