Spaces:
Sleeping
Sleeping
cleanups
Browse files
app.py
CHANGED
@@ -63,6 +63,7 @@ example_generations = model.generate(
|
|
63 |
input_ids,
|
64 |
num_beams=4,
|
65 |
num_return_sequences=4,
|
|
|
66 |
)
|
67 |
|
68 |
col1, col2 = st.columns(2)
|
@@ -90,21 +91,34 @@ with torch.no_grad():
|
|
90 |
input_ids = input_ids,
|
91 |
decoder_input_ids = torch.tensor([decoder_input_ids]).to(device))
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
last_token_logits = model_output.logits[0, -1].cpu()
|
94 |
assert len(last_token_logits.shape) == 1
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
probs =
|
98 |
probs_for_likely_tokens = probs[most_likely_tokens.indices]
|
99 |
|
100 |
with tokenizer.as_target_tokenizer():
|
101 |
-
|
102 |
'token': [tokenizer.decode(token_id) for token_id in most_likely_tokens.indices],
|
103 |
-
|
104 |
-
|
105 |
-
'
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
|
109 |
st.subheader("Most likely next tokens")
|
110 |
st.table(probs_table.style.hide(axis='index'))
|
|
|
63 |
input_ids,
|
64 |
num_beams=4,
|
65 |
num_return_sequences=4,
|
66 |
+
max_length=100,
|
67 |
)
|
68 |
|
69 |
col1, col2 = st.columns(2)
|
|
|
91 |
input_ids = input_ids,
|
92 |
decoder_input_ids = torch.tensor([decoder_input_ids]).to(device))
|
93 |
|
94 |
+
with st.expander("Configuration"):
|
95 |
+
top_k = st.slider("Number of tokens to show", min_value=1, max_value=100, value=5)
|
96 |
+
temperature = st.slider("Temperature", min_value=0.0, max_value=2.0, value=1.0, step=0.01)
|
97 |
+
show_token_ids = st.checkbox("Show token IDs", value=False)
|
98 |
+
show_logprobs = st.checkbox("Show log probabilities", value=False)
|
99 |
+
show_cumulative_probs = st.checkbox("Show cumulative probabilities", value=False)
|
100 |
+
|
101 |
last_token_logits = model_output.logits[0, -1].cpu()
|
102 |
assert len(last_token_logits.shape) == 1
|
103 |
+
# apply temperature
|
104 |
+
last_token_logits_with_temperature = last_token_logits / temperature
|
105 |
+
most_likely_tokens = last_token_logits.topk(k=top_k)
|
106 |
|
107 |
+
probs = last_token_logits_with_temperature.softmax(dim=-1)
|
108 |
probs_for_likely_tokens = probs[most_likely_tokens.indices]
|
109 |
|
110 |
with tokenizer.as_target_tokenizer():
|
111 |
+
prob_table_data = {
|
112 |
'token': [tokenizer.decode(token_id) for token_id in most_likely_tokens.indices],
|
113 |
+
}
|
114 |
+
if show_token_ids:
|
115 |
+
prob_table_data['id'] = most_likely_tokens.indices
|
116 |
+
prob_table_data['probability'] = probs_for_likely_tokens
|
117 |
+
if show_logprobs:
|
118 |
+
prob_table_data['logprob'] = last_token_logits.log_softmax(dim=-1)[most_likely_tokens.indices]
|
119 |
+
if show_cumulative_probs:
|
120 |
+
prob_table_data['cumulative probability'] = probs_for_likely_tokens.cumsum(0)
|
121 |
+
probs_table = pd.DataFrame(prob_table_data)
|
122 |
|
123 |
st.subheader("Most likely next tokens")
|
124 |
st.table(probs_table.style.hide(axis='index'))
|