Spaces:
Running
Running
import streamlit as st | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import pandas as pd | |
model_options = [ | |
'google/gemma-1.1-2b-it', | |
'google/gemma-1.1-7b-it' | |
] | |
model_name = st.selectbox("Select a model", model_options + ['other']) | |
if model_name == 'other': | |
model_name = st.text_input("Enter model name", model_options[0]) | |
def get_tokenizer(model_name): | |
return AutoTokenizer.from_pretrained(model_name).from_pretrained(model_name) | |
def get_model(model_name): | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto', torch_dtype=torch.bfloat16) | |
print(f"Loaded model, {model.num_parameters():,d} parameters.") | |
return model | |
tokenizer = get_tokenizer(model_name) | |
model = get_model(model_name) | |
prompt = st.text_area("Prompt", "Rewrite this document to be more clear and concise.") | |
doc = st.text_area("Document", "This is a document that I would like to have rewritten to be more concise.") | |
messages = [ | |
{ | |
"role": "user", | |
"content": f"{prompt}\n\n{doc}", | |
}, | |
] | |
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")[0] | |
assert len(tokenized_chat.shape) == 1 | |
doc_ids = tokenizer(doc, return_tensors='pt')['input_ids'][0] | |
joined_ids = torch.cat([tokenized_chat, doc_ids[1:]]) | |
# Call the model | |
with torch.no_grad(): | |
logits = model(joined_ids[None].to(model.device)).logits[0].cpu() | |
spans = [] | |
length_so_far = 0 | |
for idx in range(len(tokenized_chat), len(joined_ids)): | |
probs = logits[idx - 1].softmax(dim=-1) | |
token_id = joined_ids[idx] | |
token = tokenizer.decode(token_id) | |
token_loss = -probs[token_id].log().item() | |
most_likely_token_id = probs.argmax() | |
print(idx, token, token_loss, tokenizer.decode(most_likely_token_id)) | |
spans.append(dict( | |
start=length_so_far, | |
end=length_so_far + len(token), | |
token=token, | |
token_loss=token_loss, | |
most_likely_token=tokenizer.decode(most_likely_token_id) | |
)) | |
length_so_far += len(token) | |
highest_loss = max(span['token_loss'] for span in spans[1:]) | |
for span in spans: | |
span['loss_ratio'] = span['token_loss'] / highest_loss | |
html = '' | |
for span in spans: | |
b = int(256 * span["token_loss"] / highest_loss) | |
html += f'<span style="color: rgba(128, 128, {b:d})" title="{span["most_likely_token"]}">{span["token"]}</span>' | |
html = f"<p style=\"background: white;\">{html}</p>" | |
st.subheader("Rewritten document") | |
st.write(html, unsafe_allow_html=True) | |
st.write(pd.DataFrame(spans)) | |