kedudzic commited on
Commit
1866296
1 Parent(s): f4992e0

update compute

Browse files
Files changed (1) hide show
  1. charmatch.py +26 -17
charmatch.py CHANGED
@@ -87,25 +87,34 @@ class charmatch(evaluate.Metric):
87
  # TODO: Download external resources if needed
88
  pass
89
 
90
- def _compute(self, inputs, expected, outputs):
91
  def get_score(input, expected, output):
92
  print(input, expected, output)
93
- expected_corrections = lev(input, expected)
94
- distance_to_input = lev(input, output)
95
- distance_to_expected = lev(output, expected)
96
- print(f'dl(s,g): {expected_corrections}\ndl(s,h): {distance_to_input}\ndl(h,g): {distance_to_expected}')
97
-
98
- true_positives = min(expected_corrections, max(0, (expected_corrections + distance_to_input - distance_to_expected))) / 2
99
- print(f'T: {true_positives}')
100
-
101
- precision = true_positives / distance_to_input
102
- recall = true_positives / expected_corrections
103
- f_05 = (1 + 0.5**2) * (precision * recall) / (0.5**2 * precision + recall)
104
- print(f'P: {precision}\nR: {recall}')
105
-
106
- return f_05
107
-
108
- avg = sum([get_score(*row) for row in zip(inputs, expected, outputs)]) / len(inputs)
 
 
 
 
 
 
 
 
 
109
 
110
  return {
111
  "fscore": avg
 
87
  # TODO: Download external resources if needed
88
  pass
89
 
90
+ def _compute(inputs, expected, outputs):
91
  def get_score(input, expected, output):
92
  print(input, expected, output)
93
+ deduped = {input, expected, output}
94
+ if len(deduped) == 1:
95
+ return 1.0
96
+ elif len(deduped) == 2:
97
+ if expected == output:
98
+ return 1.0
99
+ else:
100
+ return 0.0
101
+ else:
102
+ expected_corrections = lev(input, expected)
103
+ distance_to_input = lev(input, output)
104
+ distance_to_expected = lev(output, expected)
105
+ print(f'dl(s,g): {expected_corrections}\ndl(s,h): {distance_to_input}\ndl(h,g): {distance_to_expected}')
106
+
107
+ true_positives = min(expected_corrections, max(0, (expected_corrections + distance_to_input - distance_to_expected))) / 2
108
+ print(f'T: {true_positives}')
109
+
110
+ precision = true_positives / distance_to_input
111
+ recall = true_positives / expected_corrections
112
+ f_05 = (1 + 0.5**2) * (precision * recall) / (0.5**2 * precision + recall)
113
+ print(f'P: {precision}\nR: {recall}')
114
+
115
+ return f_05
116
+
117
+ avg = sum([get_score(*row) for row in zip(inputs, expected, outputs)]) / len(inputs) * 100
118
 
119
  return {
120
  "fscore": avg