# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import evaluate import datasets from Levenshtein import distance as lev # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This new module is designed to solve this great ML task and is crafted with a lot of care. """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Returns: accuracy: description of the first score, another_score: description of the second score, Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> my_new_module = evaluate.load("my_new_module") >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) {'accuracy': 1.0} """ # TODO: Define external resources urls if needed BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class charmatch(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description="Charmatch", citation="", inputs_description="input expected output", # This defines the format of each prediction and reference features=datasets.Features({ 'inputs': datasets.Sequence(datasets.Value('string')), 'expected': datasets.Sequence(datasets.Value('string')), 'outputs': datasets.Sequence(datasets.Value('string')) }), # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed pass def _compute(inputs, expected, outputs): def get_score(input, expected, output): print(input, expected, output) deduped = {input, expected, output} if len(deduped) == 1: return 1.0 elif len(deduped) == 2: if expected == output: return 1.0 else: return 0.0 else: expected_corrections = lev(input, expected) distance_to_input = lev(input, output) distance_to_expected = lev(output, expected) print(f'dl(s,g): {expected_corrections}\ndl(s,h): {distance_to_input}\ndl(h,g): {distance_to_expected}') true_positives = min(expected_corrections, max(0, (expected_corrections + distance_to_input - distance_to_expected))) / 2 print(f'T: {true_positives}') precision = true_positives / distance_to_input recall = true_positives / expected_corrections f_05 = (1 + 0.5**2) * (precision * recall) / (0.5**2 * precision + recall) print(f'P: {precision}\nR: {recall}') return f_05 avg = sum([get_score(*row) for row in zip(inputs, expected, outputs)]) / len(inputs) * 100 return { "fscore": avg }