Spaces:
Runtime error
Runtime error
File size: 7,784 Bytes
b98a8e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import librosa
import librosa.filters
import numpy as np
from scipy import signal
from scipy.io import wavfile
import soundfile as sf
def load_wav(path, sr):
return librosa.core.load(path, sr=sr)[0]
def save_wav(wav, path, sr):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
#proposed by @dsmiller
wavfile.write(path, sr, wav.astype(np.int16))
def save_wavenet_wav(wav, path, sr):
sf.write(path, wav.astype(np.float32), sr)
def preemphasis(wav, k, preemphasize=True):
if preemphasize:
return signal.lfilter([1, -k], [1], wav)
return wav
def inv_preemphasis(wav, k, inv_preemphasize=True):
if inv_preemphasize:
return signal.lfilter([1], [1, -k], wav)
return wav
#From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py
def start_and_end_indices(quantized, silence_threshold=2):
for start in range(quantized.size):
if abs(quantized[start] - 127) > silence_threshold:
break
for end in range(quantized.size - 1, 1, -1):
if abs(quantized[end] - 127) > silence_threshold:
break
assert abs(quantized[start] - 127) > silence_threshold
assert abs(quantized[end] - 127) > silence_threshold
return start, end
def get_hop_size(hparams):
hop_size = hparams.hop_size
if hop_size is None:
assert hparams.frame_shift_ms is not None
hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
return hop_size
def linearspectrogram(wav, hparams):
D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db
if hparams.signal_normalization:
return _normalize(S, hparams)
return S
def melspectrogram(wav, hparams):
D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db
if hparams.signal_normalization:
return _normalize(S, hparams)
return S
def inv_linear_spectrogram(linear_spectrogram, hparams):
"""Converts linear spectrogram to waveform using librosa"""
if hparams.signal_normalization:
D = _denormalize(linear_spectrogram, hparams)
else:
D = linear_spectrogram
S = _db_to_amp(D + hparams.ref_level_db) #Convert back to linear
if hparams.use_lws:
processor = _lws_processor(hparams)
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
else:
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
def inv_mel_spectrogram(mel_spectrogram, hparams):
"""Converts mel spectrogram to waveform using librosa"""
if hparams.signal_normalization:
D = _denormalize(mel_spectrogram, hparams)
else:
D = mel_spectrogram
S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear
if hparams.use_lws:
processor = _lws_processor(hparams)
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
else:
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
def _lws_processor(hparams):
import lws
return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech")
def _griffin_lim(S, hparams):
"""librosa implementation of Griffin-Lim
Based on https://github.com/librosa/librosa/issues/434
"""
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = _istft(S_complex * angles, hparams)
for i in range(hparams.griffin_lim_iters):
angles = np.exp(1j * np.angle(_stft(y, hparams)))
y = _istft(S_complex * angles, hparams)
return y
def _stft(y, hparams):
if hparams.use_lws:
return _lws_processor(hparams).stft(y).T
else:
return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size)
def _istft(y, hparams):
return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size)
##########################################################
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
"""Compute number of time frames of spectrogram
"""
pad = (fsize - fshift)
if length % fshift == 0:
M = (length + pad * 2 - fsize) // fshift + 1
else:
M = (length + pad * 2 - fsize) // fshift + 2
return M
def pad_lr(x, fsize, fshift):
"""Compute left and right padding
"""
M = num_frames(len(x), fsize, fshift)
pad = (fsize - fshift)
T = len(x) + 2 * pad
r = (M - 1) * fshift + fsize - T
return pad, pad + r
##########################################################
#Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
# Conversions
_mel_basis = None
_inv_mel_basis = None
def _linear_to_mel(spectogram, hparams):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis(hparams)
return np.dot(_mel_basis, spectogram)
def _mel_to_linear(mel_spectrogram, hparams):
global _inv_mel_basis
if _inv_mel_basis is None:
_inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams))
return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram))
def _build_mel_basis(hparams):
assert hparams.fmax <= hparams.sample_rate // 2
return librosa.filters.mel(hparams.sample_rate, hparams.n_fft, n_mels=hparams.num_mels,
fmin=hparams.fmin, fmax=hparams.fmax)
def _amp_to_db(x, hparams):
min_level = np.exp(hparams.min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))
def _db_to_amp(x):
return np.power(10.0, (x) * 0.05)
def _normalize(S, hparams):
if hparams.allow_clipping_in_normalization:
if hparams.symmetric_mels:
return np.clip((2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value,
-hparams.max_abs_value, hparams.max_abs_value)
else:
return np.clip(hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)), 0, hparams.max_abs_value)
assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0
if hparams.symmetric_mels:
return (2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value
else:
return hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db))
def _denormalize(D, hparams):
if hparams.allow_clipping_in_normalization:
if hparams.symmetric_mels:
return (((np.clip(D, -hparams.max_abs_value,
hparams.max_abs_value) + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value))
+ hparams.min_level_db)
else:
return ((np.clip(D, 0, hparams.max_abs_value) * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
if hparams.symmetric_mels:
return (((D + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db)
else:
return ((D * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
|