Real-Time-Voice-Cloning / synthesizer /synthesizer_dataset.py
keithhon's picture
Upload synthesizer/synthesizer_dataset.py with huggingface_hub
6904995
import torch
from torch.utils.data import Dataset
import numpy as np
from pathlib import Path
from synthesizer.utils.text import text_to_sequence
class SynthesizerDataset(Dataset):
def __init__(self, metadata_fpath: Path, mel_dir: Path, embed_dir: Path, hparams):
print("Using inputs from:\n\t%s\n\t%s\n\t%s" % (metadata_fpath, mel_dir, embed_dir))
with metadata_fpath.open("r") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
mel_fnames = [x[1] for x in metadata if int(x[4])]
mel_fpaths = [mel_dir.joinpath(fname) for fname in mel_fnames]
embed_fnames = [x[2] for x in metadata if int(x[4])]
embed_fpaths = [embed_dir.joinpath(fname) for fname in embed_fnames]
self.samples_fpaths = list(zip(mel_fpaths, embed_fpaths))
self.samples_texts = [x[5].strip() for x in metadata if int(x[4])]
self.metadata = metadata
self.hparams = hparams
print("Found %d samples" % len(self.samples_fpaths))
def __getitem__(self, index):
# Sometimes index may be a list of 2 (not sure why this happens)
# If that is the case, return a single item corresponding to first element in index
if index is list:
index = index[0]
mel_path, embed_path = self.samples_fpaths[index]
mel = np.load(mel_path).T.astype(np.float32)
# Load the embed
embed = np.load(embed_path)
# Get the text and clean it
text = text_to_sequence(self.samples_texts[index], self.hparams.tts_cleaner_names)
# Convert the list returned by text_to_sequence to a numpy array
text = np.asarray(text).astype(np.int32)
return text, mel.astype(np.float32), embed.astype(np.float32), index
def __len__(self):
return len(self.samples_fpaths)
def collate_synthesizer(batch, r, hparams):
# Text
x_lens = [len(x[0]) for x in batch]
max_x_len = max(x_lens)
chars = [pad1d(x[0], max_x_len) for x in batch]
chars = np.stack(chars)
# Mel spectrogram
spec_lens = [x[1].shape[-1] for x in batch]
max_spec_len = max(spec_lens) + 1
if max_spec_len % r != 0:
max_spec_len += r - max_spec_len % r
# WaveRNN mel spectrograms are normalized to [0, 1] so zero padding adds silence
# By default, SV2TTS uses symmetric mels, where -1*max_abs_value is silence.
if hparams.symmetric_mels:
mel_pad_value = -1 * hparams.max_abs_value
else:
mel_pad_value = 0
mel = [pad2d(x[1], max_spec_len, pad_value=mel_pad_value) for x in batch]
mel = np.stack(mel)
# Speaker embedding (SV2TTS)
embeds = [x[2] for x in batch]
# Index (for vocoder preprocessing)
indices = [x[3] for x in batch]
# Convert all to tensor
chars = torch.tensor(chars).long()
mel = torch.tensor(mel)
embeds = torch.tensor(embeds)
return chars, mel, embeds, indices
def pad1d(x, max_len, pad_value=0):
return np.pad(x, (0, max_len - len(x)), mode="constant", constant_values=pad_value)
def pad2d(x, max_len, pad_value=0):
return np.pad(x, ((0, 0), (0, max_len - x.shape[-1])), mode="constant", constant_values=pad_value)