Spaces:
Runtime error
Runtime error
Upload vocoder/models/deepmind_version.py with huggingface_hub
Browse files
vocoder/models/deepmind_version.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from utils.display import *
|
5 |
+
from utils.dsp import *
|
6 |
+
|
7 |
+
|
8 |
+
class WaveRNN(nn.Module) :
|
9 |
+
def __init__(self, hidden_size=896, quantisation=256) :
|
10 |
+
super(WaveRNN, self).__init__()
|
11 |
+
|
12 |
+
self.hidden_size = hidden_size
|
13 |
+
self.split_size = hidden_size // 2
|
14 |
+
|
15 |
+
# The main matmul
|
16 |
+
self.R = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
17 |
+
|
18 |
+
# Output fc layers
|
19 |
+
self.O1 = nn.Linear(self.split_size, self.split_size)
|
20 |
+
self.O2 = nn.Linear(self.split_size, quantisation)
|
21 |
+
self.O3 = nn.Linear(self.split_size, self.split_size)
|
22 |
+
self.O4 = nn.Linear(self.split_size, quantisation)
|
23 |
+
|
24 |
+
# Input fc layers
|
25 |
+
self.I_coarse = nn.Linear(2, 3 * self.split_size, bias=False)
|
26 |
+
self.I_fine = nn.Linear(3, 3 * self.split_size, bias=False)
|
27 |
+
|
28 |
+
# biases for the gates
|
29 |
+
self.bias_u = nn.Parameter(torch.zeros(self.hidden_size))
|
30 |
+
self.bias_r = nn.Parameter(torch.zeros(self.hidden_size))
|
31 |
+
self.bias_e = nn.Parameter(torch.zeros(self.hidden_size))
|
32 |
+
|
33 |
+
# display num params
|
34 |
+
self.num_params()
|
35 |
+
|
36 |
+
|
37 |
+
def forward(self, prev_y, prev_hidden, current_coarse) :
|
38 |
+
|
39 |
+
# Main matmul - the projection is split 3 ways
|
40 |
+
R_hidden = self.R(prev_hidden)
|
41 |
+
R_u, R_r, R_e, = torch.split(R_hidden, self.hidden_size, dim=1)
|
42 |
+
|
43 |
+
# Project the prev input
|
44 |
+
coarse_input_proj = self.I_coarse(prev_y)
|
45 |
+
I_coarse_u, I_coarse_r, I_coarse_e = \
|
46 |
+
torch.split(coarse_input_proj, self.split_size, dim=1)
|
47 |
+
|
48 |
+
# Project the prev input and current coarse sample
|
49 |
+
fine_input = torch.cat([prev_y, current_coarse], dim=1)
|
50 |
+
fine_input_proj = self.I_fine(fine_input)
|
51 |
+
I_fine_u, I_fine_r, I_fine_e = \
|
52 |
+
torch.split(fine_input_proj, self.split_size, dim=1)
|
53 |
+
|
54 |
+
# concatenate for the gates
|
55 |
+
I_u = torch.cat([I_coarse_u, I_fine_u], dim=1)
|
56 |
+
I_r = torch.cat([I_coarse_r, I_fine_r], dim=1)
|
57 |
+
I_e = torch.cat([I_coarse_e, I_fine_e], dim=1)
|
58 |
+
|
59 |
+
# Compute all gates for coarse and fine
|
60 |
+
u = F.sigmoid(R_u + I_u + self.bias_u)
|
61 |
+
r = F.sigmoid(R_r + I_r + self.bias_r)
|
62 |
+
e = F.tanh(r * R_e + I_e + self.bias_e)
|
63 |
+
hidden = u * prev_hidden + (1. - u) * e
|
64 |
+
|
65 |
+
# Split the hidden state
|
66 |
+
hidden_coarse, hidden_fine = torch.split(hidden, self.split_size, dim=1)
|
67 |
+
|
68 |
+
# Compute outputs
|
69 |
+
out_coarse = self.O2(F.relu(self.O1(hidden_coarse)))
|
70 |
+
out_fine = self.O4(F.relu(self.O3(hidden_fine)))
|
71 |
+
|
72 |
+
return out_coarse, out_fine, hidden
|
73 |
+
|
74 |
+
|
75 |
+
def generate(self, seq_len):
|
76 |
+
with torch.no_grad():
|
77 |
+
# First split up the biases for the gates
|
78 |
+
b_coarse_u, b_fine_u = torch.split(self.bias_u, self.split_size)
|
79 |
+
b_coarse_r, b_fine_r = torch.split(self.bias_r, self.split_size)
|
80 |
+
b_coarse_e, b_fine_e = torch.split(self.bias_e, self.split_size)
|
81 |
+
|
82 |
+
# Lists for the two output seqs
|
83 |
+
c_outputs, f_outputs = [], []
|
84 |
+
|
85 |
+
# Some initial inputs
|
86 |
+
out_coarse = torch.LongTensor([0]).cuda()
|
87 |
+
out_fine = torch.LongTensor([0]).cuda()
|
88 |
+
|
89 |
+
# We'll meed a hidden state
|
90 |
+
hidden = self.init_hidden()
|
91 |
+
|
92 |
+
# Need a clock for display
|
93 |
+
start = time.time()
|
94 |
+
|
95 |
+
# Loop for generation
|
96 |
+
for i in range(seq_len) :
|
97 |
+
|
98 |
+
# Split into two hidden states
|
99 |
+
hidden_coarse, hidden_fine = \
|
100 |
+
torch.split(hidden, self.split_size, dim=1)
|
101 |
+
|
102 |
+
# Scale and concat previous predictions
|
103 |
+
out_coarse = out_coarse.unsqueeze(0).float() / 127.5 - 1.
|
104 |
+
out_fine = out_fine.unsqueeze(0).float() / 127.5 - 1.
|
105 |
+
prev_outputs = torch.cat([out_coarse, out_fine], dim=1)
|
106 |
+
|
107 |
+
# Project input
|
108 |
+
coarse_input_proj = self.I_coarse(prev_outputs)
|
109 |
+
I_coarse_u, I_coarse_r, I_coarse_e = \
|
110 |
+
torch.split(coarse_input_proj, self.split_size, dim=1)
|
111 |
+
|
112 |
+
# Project hidden state and split 6 ways
|
113 |
+
R_hidden = self.R(hidden)
|
114 |
+
R_coarse_u , R_fine_u, \
|
115 |
+
R_coarse_r, R_fine_r, \
|
116 |
+
R_coarse_e, R_fine_e = torch.split(R_hidden, self.split_size, dim=1)
|
117 |
+
|
118 |
+
# Compute the coarse gates
|
119 |
+
u = F.sigmoid(R_coarse_u + I_coarse_u + b_coarse_u)
|
120 |
+
r = F.sigmoid(R_coarse_r + I_coarse_r + b_coarse_r)
|
121 |
+
e = F.tanh(r * R_coarse_e + I_coarse_e + b_coarse_e)
|
122 |
+
hidden_coarse = u * hidden_coarse + (1. - u) * e
|
123 |
+
|
124 |
+
# Compute the coarse output
|
125 |
+
out_coarse = self.O2(F.relu(self.O1(hidden_coarse)))
|
126 |
+
posterior = F.softmax(out_coarse, dim=1)
|
127 |
+
distrib = torch.distributions.Categorical(posterior)
|
128 |
+
out_coarse = distrib.sample()
|
129 |
+
c_outputs.append(out_coarse)
|
130 |
+
|
131 |
+
# Project the [prev outputs and predicted coarse sample]
|
132 |
+
coarse_pred = out_coarse.float() / 127.5 - 1.
|
133 |
+
fine_input = torch.cat([prev_outputs, coarse_pred.unsqueeze(0)], dim=1)
|
134 |
+
fine_input_proj = self.I_fine(fine_input)
|
135 |
+
I_fine_u, I_fine_r, I_fine_e = \
|
136 |
+
torch.split(fine_input_proj, self.split_size, dim=1)
|
137 |
+
|
138 |
+
# Compute the fine gates
|
139 |
+
u = F.sigmoid(R_fine_u + I_fine_u + b_fine_u)
|
140 |
+
r = F.sigmoid(R_fine_r + I_fine_r + b_fine_r)
|
141 |
+
e = F.tanh(r * R_fine_e + I_fine_e + b_fine_e)
|
142 |
+
hidden_fine = u * hidden_fine + (1. - u) * e
|
143 |
+
|
144 |
+
# Compute the fine output
|
145 |
+
out_fine = self.O4(F.relu(self.O3(hidden_fine)))
|
146 |
+
posterior = F.softmax(out_fine, dim=1)
|
147 |
+
distrib = torch.distributions.Categorical(posterior)
|
148 |
+
out_fine = distrib.sample()
|
149 |
+
f_outputs.append(out_fine)
|
150 |
+
|
151 |
+
# Put the hidden state back together
|
152 |
+
hidden = torch.cat([hidden_coarse, hidden_fine], dim=1)
|
153 |
+
|
154 |
+
# Display progress
|
155 |
+
speed = (i + 1) / (time.time() - start)
|
156 |
+
stream('Gen: %i/%i -- Speed: %i', (i + 1, seq_len, speed))
|
157 |
+
|
158 |
+
coarse = torch.stack(c_outputs).squeeze(1).cpu().data.numpy()
|
159 |
+
fine = torch.stack(f_outputs).squeeze(1).cpu().data.numpy()
|
160 |
+
output = combine_signal(coarse, fine)
|
161 |
+
|
162 |
+
return output, coarse, fine
|
163 |
+
|
164 |
+
def init_hidden(self, batch_size=1) :
|
165 |
+
return torch.zeros(batch_size, self.hidden_size).cuda()
|
166 |
+
|
167 |
+
def num_params(self) :
|
168 |
+
parameters = filter(lambda p: p.requires_grad, self.parameters())
|
169 |
+
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
|
170 |
+
print('Trainable Parameters: %.3f million' % parameters)
|