keithhon commited on
Commit
f7a78a4
1 Parent(s): 93e0487

Upload encoder/audio.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. encoder/audio.py +117 -0
encoder/audio.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy.ndimage.morphology import binary_dilation
2
+ from encoder.params_data import *
3
+ from pathlib import Path
4
+ from typing import Optional, Union
5
+ from warnings import warn
6
+ import numpy as np
7
+ import librosa
8
+ import struct
9
+
10
+ try:
11
+ import webrtcvad
12
+ except:
13
+ warn("Unable to import 'webrtcvad'. This package enables noise removal and is recommended.")
14
+ webrtcvad=None
15
+
16
+ int16_max = (2 ** 15) - 1
17
+
18
+
19
+ def preprocess_wav(fpath_or_wav: Union[str, Path, np.ndarray],
20
+ source_sr: Optional[int] = None,
21
+ normalize: Optional[bool] = True,
22
+ trim_silence: Optional[bool] = True):
23
+ """
24
+ Applies the preprocessing operations used in training the Speaker Encoder to a waveform
25
+ either on disk or in memory. The waveform will be resampled to match the data hyperparameters.
26
+
27
+ :param fpath_or_wav: either a filepath to an audio file (many extensions are supported, not
28
+ just .wav), either the waveform as a numpy array of floats.
29
+ :param source_sr: if passing an audio waveform, the sampling rate of the waveform before
30
+ preprocessing. After preprocessing, the waveform's sampling rate will match the data
31
+ hyperparameters. If passing a filepath, the sampling rate will be automatically detected and
32
+ this argument will be ignored.
33
+ """
34
+ # Load the wav from disk if needed
35
+ if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path):
36
+ wav, source_sr = librosa.load(str(fpath_or_wav), sr=None)
37
+ else:
38
+ wav = fpath_or_wav
39
+
40
+ # Resample the wav if needed
41
+ if source_sr is not None and source_sr != sampling_rate:
42
+ wav = librosa.resample(wav, source_sr, sampling_rate)
43
+
44
+ # Apply the preprocessing: normalize volume and shorten long silences
45
+ if normalize:
46
+ wav = normalize_volume(wav, audio_norm_target_dBFS, increase_only=True)
47
+ if webrtcvad and trim_silence:
48
+ wav = trim_long_silences(wav)
49
+
50
+ return wav
51
+
52
+
53
+ def wav_to_mel_spectrogram(wav):
54
+ """
55
+ Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform.
56
+ Note: this not a log-mel spectrogram.
57
+ """
58
+ frames = librosa.feature.melspectrogram(
59
+ wav,
60
+ sampling_rate,
61
+ n_fft=int(sampling_rate * mel_window_length / 1000),
62
+ hop_length=int(sampling_rate * mel_window_step / 1000),
63
+ n_mels=mel_n_channels
64
+ )
65
+ return frames.astype(np.float32).T
66
+
67
+
68
+ def trim_long_silences(wav):
69
+ """
70
+ Ensures that segments without voice in the waveform remain no longer than a
71
+ threshold determined by the VAD parameters in params.py.
72
+
73
+ :param wav: the raw waveform as a numpy array of floats
74
+ :return: the same waveform with silences trimmed away (length <= original wav length)
75
+ """
76
+ # Compute the voice detection window size
77
+ samples_per_window = (vad_window_length * sampling_rate) // 1000
78
+
79
+ # Trim the end of the audio to have a multiple of the window size
80
+ wav = wav[:len(wav) - (len(wav) % samples_per_window)]
81
+
82
+ # Convert the float waveform to 16-bit mono PCM
83
+ pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16))
84
+
85
+ # Perform voice activation detection
86
+ voice_flags = []
87
+ vad = webrtcvad.Vad(mode=3)
88
+ for window_start in range(0, len(wav), samples_per_window):
89
+ window_end = window_start + samples_per_window
90
+ voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2],
91
+ sample_rate=sampling_rate))
92
+ voice_flags = np.array(voice_flags)
93
+
94
+ # Smooth the voice detection with a moving average
95
+ def moving_average(array, width):
96
+ array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2)))
97
+ ret = np.cumsum(array_padded, dtype=float)
98
+ ret[width:] = ret[width:] - ret[:-width]
99
+ return ret[width - 1:] / width
100
+
101
+ audio_mask = moving_average(voice_flags, vad_moving_average_width)
102
+ audio_mask = np.round(audio_mask).astype(np.bool)
103
+
104
+ # Dilate the voiced regions
105
+ audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1))
106
+ audio_mask = np.repeat(audio_mask, samples_per_window)
107
+
108
+ return wav[audio_mask == True]
109
+
110
+
111
+ def normalize_volume(wav, target_dBFS, increase_only=False, decrease_only=False):
112
+ if increase_only and decrease_only:
113
+ raise ValueError("Both increase only and decrease only are set")
114
+ dBFS_change = target_dBFS - 10 * np.log10(np.mean(wav ** 2))
115
+ if (dBFS_change < 0 and increase_only) or (dBFS_change > 0 and decrease_only):
116
+ return wav
117
+ return wav * (10 ** (dBFS_change / 20))