kellyxiaowei commited on
Commit
dc8253a
1 Parent(s): 88274ef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -30
app.py CHANGED
@@ -2,75 +2,78 @@ import torch
2
  import cv2
3
  import gradio as gr
4
  import numpy as np
5
- from transformers import OwlViTProcessor, OwlViTForObjectDetection
6
  import requests
 
 
 
7
 
8
- # 如果GPU可用,就使用GPU,否则使用CPU
 
9
  if torch.cuda.is_available():
10
  device = torch.device("cuda")
11
  else:
12
  device = torch.device("cpu")
13
 
14
- # 从预训练模型"google/owlvit-large-patch14"加载OWL-ViT模型,并将其放置到适当的设备上
15
  model = OwlViTForObjectDetection.from_pretrained("google/owlvit-large-patch14").to(device)
16
  model.eval()
17
-
18
- # 从同一预训练模型中加载处理器
19
  processor = OwlViTProcessor.from_pretrained("google/owlvit-large-patch14")
20
 
21
- # 定义一个函数来处理图像URL,文本查询和分数阈值
22
  def query_image(img_url, text_queries, score_threshold):
23
- # 使用requests库从URL中获取图像
24
- response = requests.get(img_url)
25
- response.raise_for_status()
26
- arr = np.asarray(bytearray(response.content), dtype=np.uint8)
27
- img = cv2.imdecode(arr, -1) # 使用-1来加载原始图像
28
 
29
- text_queries = text_queries.split(",") # 将文本查询分割成独立的查询
 
 
30
 
31
  target_sizes = torch.Tensor([img.shape[:2]])
32
- inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device) # 使用处理器创建模型的输入
33
 
34
  with torch.no_grad():
35
- outputs = model(**inputs) # 获取模型的输出
36
-
37
- # 将输出转移到CPU上
38
  outputs.logits = outputs.logits.cpu()
39
  outputs.pred_boxes = outputs.pred_boxes.cpu()
40
-
41
- # 使用处理器进行后处理
42
  results = processor.post_process(outputs=outputs, target_sizes=target_sizes)
43
  boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
44
 
45
  font = cv2.FONT_HERSHEY_SIMPLEX
46
 
47
- # 在图像上绘制边界框并添加标签
48
  for box, score, label in zip(boxes, scores, labels):
49
  box = [int(i) for i in box.tolist()]
50
 
51
  if score >= score_threshold:
52
  img = cv2.rectangle(img, box[:2], box[2:], (255,0,0), 5)
53
- y = box[3] - 10 if box[3] + 25 > 768 else box[3] + 25
54
-
 
 
 
55
  img = cv2.putText(
56
  img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA
57
  )
58
  return img
59
 
 
60
  description = """
61
- Gradio demo for OWL-ViT.
62
- You can use OWL-ViT to query images with text descriptions of any object.
63
- To use it, simply provide an image URL and enter comma separated text descriptions of objects you want to query the image for.
64
- You can also use the score threshold slider to set a threshold to filter out low probability predictions.
65
- """
 
66
 
67
- # 创建一个Gradio界面
 
 
 
 
68
  demo = gr.Interface(
69
  query_image,
70
- inputs=["text", "text", gr.Slider(0, 1, value=0.1)], # 修改输入,使其接受URL而不是图像
71
  outputs="image",
72
  title="Zero-Shot Object Detection with OWL-ViT",
73
  description=description,
74
- examples=[], # 设置为一个空列表
75
  )
76
- demo.launch()
 
2
  import cv2
3
  import gradio as gr
4
  import numpy as np
 
5
  import requests
6
+ from PIL import Image
7
+ from io import BytesIO
8
+ from transformers import OwlViTProcessor, OwlViTForObjectDetection
9
 
10
+
11
+ # Use GPU if available
12
  if torch.cuda.is_available():
13
  device = torch.device("cuda")
14
  else:
15
  device = torch.device("cpu")
16
 
 
17
  model = OwlViTForObjectDetection.from_pretrained("google/owlvit-large-patch14").to(device)
18
  model.eval()
 
 
19
  processor = OwlViTProcessor.from_pretrained("google/owlvit-large-patch14")
20
 
21
+
22
  def query_image(img_url, text_queries, score_threshold):
23
+ text_queries = text_queries.split(",")
 
 
 
 
24
 
25
+ response = requests.get(img_url)
26
+ img = Image.open(BytesIO(response.content))
27
+ img = np.array(img)
28
 
29
  target_sizes = torch.Tensor([img.shape[:2]])
30
+ inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device)
31
 
32
  with torch.no_grad():
33
+ outputs = model(**inputs)
34
+
 
35
  outputs.logits = outputs.logits.cpu()
36
  outputs.pred_boxes = outputs.pred_boxes.cpu()
 
 
37
  results = processor.post_process(outputs=outputs, target_sizes=target_sizes)
38
  boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
39
 
40
  font = cv2.FONT_HERSHEY_SIMPLEX
41
 
 
42
  for box, score, label in zip(boxes, scores, labels):
43
  box = [int(i) for i in box.tolist()]
44
 
45
  if score >= score_threshold:
46
  img = cv2.rectangle(img, box[:2], box[2:], (255,0,0), 5)
47
+ if box[3] + 25 > 768:
48
+ y = box[3] - 10
49
+ else:
50
+ y = box[3] + 25
51
+
52
  img = cv2.putText(
53
  img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA
54
  )
55
  return img
56
 
57
+
58
  description = """
59
+ Gradio demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlvit">OWL-ViT</a>,
60
+ introduced in <a href="https://arxiv.org/abs/2205.06230">Simple Open-Vocabulary Object Detection
61
+ with Vision Transformers</a>.
62
+ \n\nYou can use OWL-ViT to query images with text descriptions of any object.
63
+ To use it, simply input the URL of an image and enter comma separated text descriptions of objects you want to query the image for. You
64
+ can also use the score threshold slider to set a threshold to filter out low probability predictions.
65
 
66
+ \n\nOWL-ViT is trained on text templates,
67
+ hence you can get better predictions by querying the image with text templates used in training the original model: *"photo of a star-spangled banner"*,
68
+ *"image of a shoe"*. Refer to the <a href="https://arxiv.org/abs/2103.00020">CLIP</a> paper to see the full list of text templates used to augment the training data.
69
+ \n\n<a href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb">Colab demo</a>
70
+ """
71
  demo = gr.Interface(
72
  query_image,
73
+ inputs=["text", "text", gr.Slider(0, 1, value=0.1)],
74
  outputs="image",
75
  title="Zero-Shot Object Detection with OWL-ViT",
76
  description=description,
77
+ examples=[],
78
  )
79
+ demo.launch()