import os import shutil import subprocess import zipfile import time import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms, models from torch.optim import lr_scheduler import subprocess import zipfile from PIL import Image import gradio as gr # Step 1: Setup Kaggle API # Ensure the .kaggle directory exists kaggle_dir = os.path.expanduser("~/.kaggle") if not os.path.exists(kaggle_dir): os.makedirs(kaggle_dir) # Step 2: Copy the kaggle.json file to the ~/.kaggle directory kaggle_json_path = "kaggle.json" kaggle_dest_path = os.path.join(kaggle_dir, "kaggle.json") if not os.path.exists(kaggle_dest_path): shutil.copy(kaggle_json_path, kaggle_dest_path) os.chmod(kaggle_dest_path, 0o600) print("Kaggle API key copied and permissions set.") else: print("Kaggle API key already exists.") # Step 3: Download the dataset from Kaggle using Kaggle CLI dataset_name = "mostafaabla/garbage-classification" print(f"Downloading the dataset: {dataset_name}") download_command = f"kaggle datasets download -d {dataset_name}" # Run the download command subprocess.run(download_command, shell=True) # Step 4: Unzip the downloaded dataset dataset_zip = "garbage-classification.zip" extracted_folder = "./garbage-classification" # Check if the zip file exists if os.path.exists(dataset_zip): if not os.path.exists(extracted_folder): with zipfile.ZipFile(dataset_zip, 'r') as zip_ref: zip_ref.extractall(extracted_folder) print("Dataset unzipped successfully!") else: print("Dataset already unzipped.") else: print(f"Dataset zip file '{dataset_zip}' not found.") # Load your model def load_model(): model = models.resnet50(weights='DEFAULT') # Using default weights for initialization num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 12) # Adjust to the number of classes you have # Load the state dict without the weights_only argument model.load_state_dict(torch.load('resnet50_garbage_classification.pth', map_location=torch.device('cpu'))) model.eval() # Set to evaluation mode return model model = load_model() # Define image transformations transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # Class names class_names = ['battery', 'biological', 'brown-glass', 'cardboard', 'clothes', 'green-glass', 'metal', 'paper', 'plastic', 'shoes', 'trash', 'white-glass'] # Define bin colors for each class bin_colors = { 'battery': 'Merah (Red)', # Limbah berbahaya 'biological': 'Cokelat (Brown)', # Limbah organik 'brown-glass': 'Hijau (Green)', # Gelas berwarna coklat 'cardboard': 'Kuning (Yellow)', # Limbah daur ulang 'clothes': 'Biru (Blue)', # Pakaian dan tekstil 'green-glass': 'Hijau (Green)', # Gelas berwarna hijau 'metal': 'Kuning (Yellow)', # Limbah daur ulang 'paper': 'Kuning (Yellow)', # Limbah daur ulang 'plastic': 'Kuning (Yellow)', # Limbah daur ulang 'shoes': 'Biru (Blue)', # Pakaian dan tekstil 'trash': 'Hitam (Black)', # Limbah umum 'white-glass': 'Putih (White)' # Gelas berwarna putih } # Define the prediction function def predict(image): image = Image.fromarray(image) # Convert numpy array to PIL Image image = transform(image) # Apply transformations image = image.unsqueeze(0) # Add batch dimension with torch.no_grad(): outputs = model(image) _, predicted = torch.max(outputs, 1) class_name = class_names[predicted.item()] # Return predicted class name bin_color = bin_colors[class_name] # Get the corresponding bin color return class_name, bin_color # Return both class name and bin color # Make Gradio Interface iface = gr.Interface( fn=predict, inputs=gr.Image(type="numpy", label="Unggah Gambar"), outputs=[ gr.Textbox(label="Jenis Sampah"), gr.Textbox(label="Tong Sampah yang Sesuai") # 2 output with label ], title="Klasifikasi Sampah dengan ResNet50", description="Unggah gambar sampah, dan model akan mengklasifikasikannya ke dalam salah satu dari 12 kategori bersama dengan warna tempat sampah yang sesuai." ) iface.launch(share=True)