File size: 9,858 Bytes
3860419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
The [dataset_info.json](dataset_info.json) contains all available datasets. If you are using a custom dataset, please **make sure** to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.

Currently we support datasets in **alpaca** and **sharegpt** format.

```json
"dataset_name": {
  "hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
  "ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url and file_name)",
  "script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
  "file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
  "formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
  "ranking": "whether the dataset is a preference dataset or not. (default: False)",
  "subset": "the name of the subset. (optional, default: None)",
  "folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
  "columns (optional)": {
    "prompt": "the column name in the dataset containing the prompts. (default: instruction)",
    "query": "the column name in the dataset containing the queries. (default: input)",
    "response": "the column name in the dataset containing the responses. (default: output)",
    "history": "the column name in the dataset containing the histories. (default: None)",
    "messages": "the column name in the dataset containing the messages. (default: conversations)",
    "system": "the column name in the dataset containing the system prompts. (default: None)",
    "tools": "the column name in the dataset containing the tool description. (default: None)",
    "images": "the column name in the dataset containing the image inputs. (default: None)",
    "chosen": "the column name in the dataset containing the chosen answers. (default: None)",
    "rejected": "the column name in the dataset containing the rejected answers. (default: None)",
    "kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
  },
  "tags (optional, used for the sharegpt format)": {
    "role_tag": "the key in the message represents the identity. (default: from)",
    "content_tag": "the key in the message represents the content. (default: value)",
    "user_tag": "the value of the role_tag represents the user. (default: human)",
    "assistant_tag": "the value of the role_tag represents the assistant. (default: gpt)",
    "observation_tag": "the value of the role_tag represents the tool results. (default: observation)",
    "function_tag": "the value of the role_tag represents the function call. (default: function_call)",
    "system_tag": "the value of the role_tag represents the system prompt. (default: system, can override system column)"
  }
}
```

## Alpaca Format

### Supervised Fine-Tuning Dataset

* [Example dataset](alpaca_en_demo.json)

In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the human prompt, then the human prompt would be `instruction\ninput`. The `output` column represents the model response.

The `system` column will be used as the system prompt if specified.

The `history` column is a list consisting of string tuples representing prompt-response pairs in the history messages. Note that the responses in the history **will also be learned by the model** in supervised fine-tuning.

```json
[
  {
    "instruction": "human instruction (required)",
    "input": "human input (optional)",
    "output": "model response (required)",
    "system": "system prompt (optional)",
    "history": [
      ["human instruction in the first round (optional)", "model response in the first round (optional)"],
      ["human instruction in the second round (optional)", "model response in the second round (optional)"]
    ]
  }
]
```

Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:

```json
"dataset_name": {
  "file_name": "data.json",
  "columns": {
    "prompt": "instruction",
    "query": "input",
    "response": "output",
    "system": "system",
    "history": "history"
  }
}
```

### Pre-training Dataset

- [Example dataset](c4_demo.json)

In pre-training, only the `text` column will be used for model learning.

```json
[
  {"text": "document"},
  {"text": "document"}
]
```

Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:

```json
"dataset_name": {
  "file_name": "data.json",
  "columns": {
    "prompt": "text"
  }
}
```

### Preference Dataset

Preference datasets are used for reward modeling, DPO training and ORPO training.

It requires a better response in `chosen` column and a worse response in `rejected` column.

```json
[
  {
    "instruction": "human instruction (required)",
    "input": "human input (optional)",
    "chosen": "chosen answer (required)",
    "rejected": "rejected answer (required)"
  }
]
```

Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:

```json
"dataset_name": {
  "file_name": "data.json",
  "ranking": true,
  "columns": {
    "prompt": "instruction",
    "query": "input",
    "chosen": "chosen",
    "rejected": "rejected"
  }
}
```

### KTO Dataset

- [Example dataset](kto_en_demo.json)

KTO datasets require a extra `kto_tag` column containing the boolean human feedback.

```json
[
  {
    "instruction": "human instruction (required)",
    "input": "human input (optional)",
    "output": "model response (required)",
    "kto_tag": "human feedback [true/false] (required)"
  }
]
```

Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:

```json
"dataset_name": {
  "file_name": "data.json",
  "columns": {
    "prompt": "instruction",
    "query": "input",
    "response": "output",
    "kto_tag": "kto_tag"
  }
}
```

### Multimodal Dataset

- [Example dataset](mllm_demo.json)

Multimodal datasets require a `images` column containing the paths to the input images. Currently we only support one image.

```json
[
  {
    "instruction": "human instruction (required)",
    "input": "human input (optional)",
    "output": "model response (required)",
    "images": [
      "image path (required)"
    ]
  }
]
```

Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:

```json
"dataset_name": {
  "file_name": "data.json",
  "columns": {
    "prompt": "instruction",
    "query": "input",
    "response": "output",
    "images": "images"
  }
}
```

## Sharegpt Format

### Supervised Fine-Tuning Dataset

- [Example dataset](glaive_toolcall_en_demo.json)

Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.

Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.

```json
[
  {
    "conversations": [
      {
        "from": "human",
        "value": "human instruction"
      },
      {
        "from": "function_call",
        "value": "tool arguments"
      },
      {
        "from": "observation",
        "value": "tool result"
      },
      {
        "from": "gpt",
        "value": "model response"
      }
    ],
    "system": "system prompt (optional)",
    "tools": "tool description (optional)"
  }
]
```

Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:

```json
"dataset_name": {
  "file_name": "data.json",
  "formatting": "sharegpt",
  "columns": {
    "messages": "conversations",
    "system": "system",
    "tools": "tools"
  }
}
```

### Preference Dataset

- [Example dataset](dpo_en_demo.json)

Preference datasets in sharegpt format also require a better message in `chosen` column and a worse message in `rejected` column.

```json
[
  {
    "conversations": [
      {
        "from": "human",
        "value": "human instruction"
      },
      {
        "from": "gpt",
        "value": "model response"
      },
      {
        "from": "human",
        "value": "human instruction"
      }
    ],
    "chosen": {
      "from": "gpt",
      "value": "chosen answer (required)"
    },
    "rejected": {
      "from": "gpt",
      "value": "rejected answer (required)"
    }
  }
]
```

Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:

```json
"dataset_name": {
  "file_name": "data.json",
  "formatting": "sharegpt",
  "ranking": true,
  "columns": {
    "messages": "conversations",
    "chosen": "chosen",
    "rejected": "rejected"
  }
}
```

### OpenAI Format

The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.

```json
[
  {
    "messages": [
      {
        "role": "system",
        "content": "system prompt (optional)"
      },
      {
        "role": "user",
        "content": "human instruction"
      },
      {
        "role": "assistant",
        "content": "model response"
      }
    ]
  }
]
```

Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:

```json
"dataset_name": {
  "file_name": "data.json",
  "formatting": "sharegpt",
  "columns": {
    "messages": "messages"
  },
  "tags": {
    "role_tag": "role",
    "content_tag": "content",
    "user_tag": "user",
    "assistant_tag": "assistant",
    "system_tag": "system"
  }
}
```

The KTO datasets and multimodal datasets in sharegpt format are similar to the alpaca format.

Pre-training datasets are **incompatible** with the sharegpt format.