File size: 4,285 Bytes
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import importlib
import logging
import re
from typing import Dict, List

import openai
import weaviate
from weaviate.embedded import EmbeddedOptions


def can_import(module_name):
    try:
        importlib.import_module(module_name)
        return True
    except ImportError:
        return False


assert can_import("weaviate"), (
    "\033[91m\033[1m"
    + "Weaviate storage requires package weaviate-client.\nInstall:  pip install -r extensions/requirements.txt"
)


def create_client(
    weaviate_url: str, weaviate_api_key: str, weaviate_use_embedded: bool
):
    if weaviate_use_embedded:
        client = weaviate.Client(embedded_options=EmbeddedOptions())
    else:
        auth_config = (
            weaviate.auth.AuthApiKey(api_key=weaviate_api_key)
            if weaviate_api_key
            else None
        )
        client = weaviate.Client(weaviate_url, auth_client_secret=auth_config)

    return client


class WeaviateResultsStorage:
    schema = {
        "properties": [
            {"name": "result_id", "dataType": ["string"]},
            {"name": "task", "dataType": ["string"]},
            {"name": "result", "dataType": ["text"]},
        ]
    }

    def __init__(
        self,
        openai_api_key: str,
        weaviate_url: str,
        weaviate_api_key: str,
        weaviate_use_embedded: bool,
        llm_model: str,
        llama_model_path: str,
        results_store_name: str,
        objective: str,
    ):
        openai.api_key = openai_api_key
        self.client = create_client(
            weaviate_url, weaviate_api_key, weaviate_use_embedded
        )
        self.index_name = None
        self.create_schema(results_store_name)

        self.llm_model = llm_model
        self.llama_model_path = llama_model_path

    def create_schema(self, results_store_name: str):
        valid_class_name = re.compile(r"^[A-Z][a-zA-Z0-9_]*$")
        if not re.match(valid_class_name, results_store_name):
            raise ValueError(
                f"Invalid index name: {results_store_name}. "
                "Index names must start with a capital letter and "
                "contain only alphanumeric characters and underscores."
            )

        self.schema["class"] = results_store_name
        if self.client.schema.contains(self.schema):
            logging.info(
                f"Index named {results_store_name} already exists. Reusing it."
            )
        else:
            logging.info(f"Creating index named {results_store_name}")
            self.client.schema.create_class(self.schema)

        self.index_name = results_store_name

    def add(self, task: Dict, result: Dict, result_id: int, vector: List):
        enriched_result = {"data": result}
        vector = self.get_embedding(enriched_result["data"])

        with self.client.batch as batch:
            data_object = {
                "result_id": result_id,
                "task": task["task_name"],
                "result": result,
            }
            batch.add_data_object(
                data_object=data_object, class_name=self.index_name, vector=vector
            )

    def query(self, query: str, top_results_num: int) -> List[dict]:
        query_embedding = self.get_embedding(query)

        results = (
            self.client.query.get(self.index_name, ["task"])
            .with_hybrid(query=query, alpha=0.5, vector=query_embedding)
            .with_limit(top_results_num)
            .do()
        )

        return self._extract_tasks(results)

    def _extract_tasks(self, data):
        task_data = data.get("data", {}).get("Get", {}).get(self.index_name, [])
        return [item["task"] for item in task_data]

    # Get embedding for the text
    def get_embedding(self, text: str) -> list:
        text = text.replace("\n", " ")

        if self.llm_model.startswith("llama"):
            from llama_cpp import Llama

            llm_embed = Llama(
                model_path=self.llama_model_path,
                n_ctx=2048,
                n_threads=4,
                embedding=True,
                use_mlock=True,
            )
            return llm_embed.embed(text)

        return openai.Embedding.create(input=[text], model="text-embedding-ada-002")[
            "data"
        ][0]["embedding"]