File size: 7,920 Bytes
d6a2797
 
a74f794
90a420e
a74f794
 
d6a2797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e6264
d6a2797
 
1c6b863
d6a2797
 
 
41e5bd2
a1e6264
480c871
41e5bd2
d6a2797
 
 
 
 
a1e6264
 
 
 
36c2b65
a1e6264
36c2b65
636ff10
a1e6264
 
20c5a04
 
 
 
70b71a3
20c5a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e6264
6c506a1
5a16c22
70b71a3
5a16c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c506a1
5a16c22
 
6c506a1
5a16c22
 
 
 
0122be6
bd4cb9f
5a16c22
 
 
 
 
 
d6a2797
 
70b71a3
d6a2797
 
 
 
 
 
 
 
 
 
 
a1e6264
 
 
a74f794
36c2b65
 
 
 
41e5bd2
 
36c2b65
93f3952
d6a2797
93f3952
 
 
 
d6a2797
93f3952
d6a2797
 
 
41e5bd2
 
 
 
 
d6a2797
a74f794
d6a2797
 
 
a74f794
d6a2797
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import psycopg2
from sentence_transformers import SentenceTransformer
from fastapi import APIRouter, HTTPException
import os



class ProductDatabase:
    def __init__(self, database_url):
        self.database_url = database_url
        self.conn = None
        self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
    
    def connect(self):
        self.conn = psycopg2.connect(self.database_url)
    
    def close(self):
        if self.conn:
            self.conn.close()
    
    def setup_vector_extension_and_column(self):
        with self.conn.cursor() as cursor:
            # pgvector拡張機能のインストール
            cursor.execute("CREATE EXTENSION IF NOT EXISTS vector;")
            
            # ベクトルカラムの追加
            cursor.execute("ALTER TABLE products ADD COLUMN IF NOT EXISTS vector_col vector(384);")
            
            self.conn.commit()

    def get_embedding(self, text):
        embedding = self.model.encode(text)
        return embedding

    def insert_vector(self, product_id, text):
        vector = self.get_embedding(text).tolist()  # ndarray をリストに変換
        with self.conn.cursor() as cursor:
            cursor.execute("UPDATE diamondprice SET vector_col = %s WHERE id = %s", (vector, product_id))
            self.conn.commit()

    def search_similar_vectors(self, query_text, top_k=10):
        query_vector = self.get_embedding(query_text).tolist()  # ndarray をリストに変換
        with self.conn.cursor() as cursor:
            cursor.execute("""
                SELECT id,price,carat, cut, color, clarity, depth, diamondprice.table, x, y, z, vector_col <=> %s::vector AS distance
                FROM diamondprice
                WHERE vector_col IS NOT NULL
                ORDER BY distance asc
                LIMIT %s;
            """, (query_vector, top_k))
            results = cursor.fetchall()
            return results

    def search_similar_all(self, query_text, top_k=5):
        query_vector = self.get_embedding(query_text).tolist()  # ndarray をリストに変換
        with self.conn.cursor() as cursor:
            cursor.execute("""
                SELECT id,carat, cut, color, clarity, depth, diamondprice.table, x, y, z
                FROM diamondprice
                order by id asc
                limit 10000000
            """, (query_vector, top_k))
            results = cursor.fetchall()
            return results      

def create_index():
    # データベース接続情報
    DATABASE_URL = os.getenv("postgre_url")
    
    # ProductDatabaseクラスのインスタンスを作成
    db = ProductDatabase(DATABASE_URL)
    
    # データベースに接続
    db.connect()
    
    try:
        # pgvector拡張機能のインストールとカラムの追加
        db.setup_vector_extension_and_column()
        print("Vector extension installed and column added successfully.")
        query_text="1"
        results = db.search_similar_all(query_text)
        print("Search results:")
        DEBUG=1
        if DEBUG==1:
            for result in results:
                print(result) 
                id = result[0]
                sample_text = str(result[1])+str(result[2])+str(result[3])+str(result[4])+str(result[5])+str(result[6])+str(result[7])+str(result[8])+str(result[9])
                print(sample_text)
                db.insert_vector(id, sample_text) 
        #return
        # サンプルデータの挿入
        #sample_text = """"""
        #sample_product_id = 1  # 実際の製品IDを使用
        #db.insert_vector(sample_product_id, sample_text)
        #db.insert_vector(2, sample_text)

        #print(f"Vector inserted for product ID {sample_product_id}.")

        
        # ベクトル検索
        query_text = "2.03Very GoodJSI262.058.08.068.125.05"

        query_text = "2.03Very GoodJSI2"
        #query

        #query_text = "2.03-Very Good-J-SI2-62.2-58.0-7.27-7.33-4.55"
        results = db.search_similar_vectors(query)#query_text)
        res_all = ""
        print("Search results:")
        for result in results:
            print(result)
            res_all += str(result)+"\r\n"
        return res_all
    
    finally:
        # 接続を閉じる
        db.close()    


def calculate(query):
    # データベース接続情報
    DATABASE_URL = os.getenv("postgre_url")
    
    # ProductDatabaseクラスのインスタンスを作成
    db = ProductDatabase(DATABASE_URL)
    
    # データベースに接続
    db.connect()
    
    try:
        # pgvector拡張機能のインストールとカラムの追加
        db.setup_vector_extension_and_column()
        print("Vector extension installed and column added successfully.")
        query_text="1"
        results = db.search_similar_all(query_text)
        print("Search results:")
        DEBUG=0
        if DEBUG==1:
            for result in results:
                print(result) 
                id = result[0]
                sample_text = str(result[1])+str(result[2])+str(result[3])+str(result[4])+str(result[5])+str(result[6])+str(result[7])+str(result[8])+str(result[9])
                print(sample_text)
                db.insert_vector(id, sample_text) 
        #return
        # サンプルデータの挿入
        #sample_text = """"""
        #sample_product_id = 1  # 実際の製品IDを使用
        #db.insert_vector(sample_product_id, sample_text)
        #db.insert_vector(2, sample_text)

        #print(f"Vector inserted for product ID {sample_product_id}.")

        
        # ベクトル検索
        query_text = "2.03Very GoodJSI262.058.08.068.125.05"

        query_text = "2.03Very GoodJSI2"
        #query

        #query_text = "2.03-Very Good-J-SI2-62.2-58.0-7.27-7.33-4.55"
        results = db.search_similar_vectors(query)#query_text)
        res_all = ""
        print("Search results:")
        for result in results:
            print(result)
            res_all += str(result)+"\r\n"
        return res_all
    
    finally:
        # 接続を閉じる
        db.close()


def main():
    # データベース接続情報
    DATABASE_URL = os.getenv("postgre_url")
    
    # ProductDatabaseクラスのインスタンスを作成
    db = ProductDatabase(DATABASE_URL)
    
    # データベースに接続
    db.connect()
    
    try:
        # pgvector拡張機能のインストールとカラムの追加
        db.setup_vector_extension_and_column()
        print("Vector extension installed and column added successfully.")
        query_text="1"
        results = db.search_similar_all(query_text)
        print("Search results:")
        DEBUG=0
        if DEBUG==1:
            for result in results:
                print(result) 
                id = result[0]
                sample_text = str(result[1])+str(result[2])+str(result[3])+str(result[4])+str(result[5])+str(result[6])+str(result[7])+str(result[8])+str(result[9])
                print(sample_text)
                db.insert_vector(id, sample_text) 
        #return
        # サンプルデータの挿入
        #sample_text = """"""
        #sample_product_id = 1  # 実際の製品IDを使用
        #db.insert_vector(sample_product_id, sample_text)
        #db.insert_vector(2, sample_text)

        #print(f"Vector inserted for product ID {sample_product_id}.")

        
        # ベクトル検索
        query_text = "2.03Very GoodJSI262.058.08.068.125.05"

        query_text = "2.03Very GoodJSI2"

        #query_text = "2.03-Very Good-J-SI2-62.2-58.0-7.27-7.33-4.55"
        results = db.search_similar_vectors(query_text)
        res_all = ""
        print("Search results:")
        for result in results:
            print(result)
            res_all += result+""
    
    finally:
        # 接続を閉じる
        db.close()

if __name__ == "__main__":
    main()