Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Converts the Qwen models in the same format as LLaMA2. | |
# Usage: python llamafy_qwen.py --input_dir input --output_dir output | |
# Converted model: https://huggingface.co/hiyouga/Qwen-14B-Chat-LLaMAfied | |
import json | |
import os | |
from collections import OrderedDict | |
from typing import Any, Dict, Optional | |
import fire | |
import torch | |
from safetensors import safe_open | |
from safetensors.torch import save_file | |
from tqdm import tqdm | |
from transformers.modeling_utils import ( | |
SAFE_WEIGHTS_INDEX_NAME, | |
SAFE_WEIGHTS_NAME, | |
WEIGHTS_INDEX_NAME, | |
WEIGHTS_NAME, | |
shard_checkpoint, | |
) | |
from transformers.utils import check_min_version | |
try: | |
check_min_version("4.34.0") | |
except Exception: | |
raise ValueError("Please upgrade `transformers` to 4.34.0") | |
CONFIG_NAME = "config.json" | |
def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool) -> str: | |
qwen_state_dict: Dict[str, torch.Tensor] = OrderedDict() | |
for filepath in tqdm(os.listdir(input_dir), desc="Load weights"): | |
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".safetensors"): | |
with safe_open(os.path.join(input_dir, filepath), framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
qwen_state_dict[key] = f.get_tensor(key) | |
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict() | |
torch_dtype = None | |
for key, value in tqdm(qwen_state_dict.items(), desc="Convert format"): | |
if torch_dtype is None: | |
torch_dtype = value.dtype | |
if "wte" in key: | |
llama2_state_dict["model.embed_tokens.weight"] = value | |
elif "ln_f" in key: | |
llama2_state_dict["model.norm.weight"] = value | |
else: | |
key = key.replace("transformer.h", "model.layers") | |
if "attn.c_attn" in key: | |
proj_size = value.size(0) // 3 | |
llama2_state_dict[key.replace("attn.c_attn", "self_attn.q_proj")] = value[:proj_size, ...] | |
llama2_state_dict[key.replace("attn.c_attn", "self_attn.k_proj")] = value[ | |
proj_size : 2 * proj_size, ... | |
] | |
llama2_state_dict[key.replace("attn.c_attn", "self_attn.v_proj")] = value[2 * proj_size :, ...] | |
elif "attn.c_proj" in key: | |
llama2_state_dict[key.replace("attn.c_proj", "self_attn.o_proj")] = value | |
llama2_state_dict[key.replace("attn.c_proj.weight", "self_attn.o_proj.bias")] = torch.zeros_like( | |
value[:, 0] | |
).squeeze() | |
elif "ln_1" in key: | |
llama2_state_dict[key.replace("ln_1", "input_layernorm")] = value | |
elif "ln_2" in key: | |
llama2_state_dict[key.replace("ln_2", "post_attention_layernorm")] = value | |
elif "mlp.w1" in key: | |
llama2_state_dict[key.replace("mlp.w1", "mlp.up_proj")] = value | |
elif "mlp.w2" in key: | |
llama2_state_dict[key.replace("mlp.w2", "mlp.gate_proj")] = value | |
elif "mlp.c_proj" in key: | |
llama2_state_dict[key.replace("mlp.c_proj", "mlp.down_proj")] = value | |
elif "lm_head" in key: | |
llama2_state_dict[key] = value | |
else: | |
raise KeyError("Unable to process key {}".format(key)) | |
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME | |
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name) | |
for shard_file, shard in tqdm(shards.items(), desc="Save weights"): | |
if save_safetensors: | |
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) | |
else: | |
torch.save(shard, os.path.join(output_dir, shard_file)) | |
if index is None: | |
print("Model weights saved in {}".format(os.path.join(output_dir, weights_name))) | |
else: | |
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME | |
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: | |
json.dump(index, f, indent=2, sort_keys=True) | |
print("Model weights saved in {}".format(output_dir)) | |
return str(torch_dtype).replace("torch.", "") | |
def save_config(input_dir: str, output_dir: str, torch_dtype: str): | |
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: | |
qwen_config_dict: Dict[str, Any] = json.load(f) | |
llama2_config_dict: Dict[str, Any] = OrderedDict() | |
llama2_config_dict["architectures"] = ["LlamaForCausalLM"] | |
llama2_config_dict["hidden_act"] = "silu" | |
llama2_config_dict["hidden_size"] = qwen_config_dict["hidden_size"] | |
llama2_config_dict["initializer_range"] = qwen_config_dict["initializer_range"] | |
llama2_config_dict["intermediate_size"] = qwen_config_dict["intermediate_size"] // 2 | |
llama2_config_dict["max_position_embeddings"] = qwen_config_dict["max_position_embeddings"] | |
llama2_config_dict["model_type"] = "llama" | |
llama2_config_dict["num_attention_heads"] = qwen_config_dict["num_attention_heads"] | |
llama2_config_dict["num_hidden_layers"] = qwen_config_dict["num_hidden_layers"] | |
llama2_config_dict["num_key_value_heads"] = qwen_config_dict["hidden_size"] // qwen_config_dict["kv_channels"] | |
llama2_config_dict["pretraining_tp"] = 1 | |
llama2_config_dict["rms_norm_eps"] = qwen_config_dict["layer_norm_epsilon"] | |
llama2_config_dict["rope_scaling"] = None | |
llama2_config_dict["tie_word_embeddings"] = qwen_config_dict["tie_word_embeddings"] | |
llama2_config_dict["torch_dtype"] = torch_dtype | |
llama2_config_dict["transformers_version"] = "4.34.0" | |
llama2_config_dict["use_cache"] = True | |
llama2_config_dict["vocab_size"] = qwen_config_dict["vocab_size"] | |
llama2_config_dict["attention_bias"] = True | |
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f: | |
json.dump(llama2_config_dict, f, indent=2) | |
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME))) | |
def llamafy_qwen( | |
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False | |
): | |
try: | |
os.makedirs(output_dir, exist_ok=False) | |
except Exception as e: | |
raise print("Output dir already exists", e) | |
torch_dtype = save_weight(input_dir, output_dir, shard_size, save_safetensors) | |
save_config(input_dir, output_dir, torch_dtype) | |
if __name__ == "__main__": | |
fire.Fire(llamafy_qwen) | |