Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import datasets | |
import pandas as pd | |
_CITATION = """\ | |
@article{li2023cmmlu, | |
title={CMMLU: Measuring massive multitask language understanding in Chinese}, | |
author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and Hai Zhao and Yeyun Gong and Nan Duan and Timothy Baldwin}, | |
journal={arXiv preprint arXiv:2306.09212}, | |
year={2023} | |
} | |
""" | |
_DESCRIPTION = """\ | |
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge and reasoning abilities of LLMs within the Chinese language and cultural context. | |
""" | |
_HOMEPAGE = "https://github.com/haonan-li/CMMLU" | |
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" | |
_URL = "cmmlu.zip" | |
task_list = [ | |
"agronomy", | |
"anatomy", | |
"ancient_chinese", | |
"arts", | |
"astronomy", | |
"business_ethics", | |
"chinese_civil_service_exam", | |
"chinese_driving_rule", | |
"chinese_food_culture", | |
"chinese_foreign_policy", | |
"chinese_history", | |
"chinese_literature", | |
"chinese_teacher_qualification", | |
"clinical_knowledge", | |
"college_actuarial_science", | |
"college_education", | |
"college_engineering_hydrology", | |
"college_law", | |
"college_mathematics", | |
"college_medical_statistics", | |
"college_medicine", | |
"computer_science", | |
"computer_security", | |
"conceptual_physics", | |
"construction_project_management", | |
"economics", | |
"education", | |
"electrical_engineering", | |
"elementary_chinese", | |
"elementary_commonsense", | |
"elementary_information_and_technology", | |
"elementary_mathematics", | |
"ethnology", | |
"food_science", | |
"genetics", | |
"global_facts", | |
"high_school_biology", | |
"high_school_chemistry", | |
"high_school_geography", | |
"high_school_mathematics", | |
"high_school_physics", | |
"high_school_politics", | |
"human_sexuality", | |
"international_law", | |
"journalism", | |
"jurisprudence", | |
"legal_and_moral_basis", | |
"logical", | |
"machine_learning", | |
"management", | |
"marketing", | |
"marxist_theory", | |
"modern_chinese", | |
"nutrition", | |
"philosophy", | |
"professional_accounting", | |
"professional_law", | |
"professional_medicine", | |
"professional_psychology", | |
"public_relations", | |
"security_study", | |
"sociology", | |
"sports_science", | |
"traditional_chinese_medicine", | |
"virology", | |
"world_history", | |
"world_religions", | |
] | |
class CMMLUConfig(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super().__init__(version=datasets.Version("1.0.1"), **kwargs) | |
class CMMLU(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
CMMLUConfig( | |
name=task_name, | |
) | |
for task_name in task_list | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"question": datasets.Value("string"), | |
"A": datasets.Value("string"), | |
"B": datasets.Value("string"), | |
"C": datasets.Value("string"), | |
"D": datasets.Value("string"), | |
"answer": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data_dir = dl_manager.download_and_extract(_URL) | |
task_name = self.config.name | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, f"test/{task_name}.csv"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, f"dev/{task_name}.csv"), | |
}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8") | |
for i, instance in enumerate(df.to_dict(orient="records")): | |
question = instance.pop("Question", "") | |
answer = instance.pop("Answer", "") | |
instance["question"] = question | |
instance["answer"] = answer | |
yield i, instance | |