from optimization_pipeline import OptimizationPipeline from utils.config import load_yaml, modify_input_for_ranker, validate_generation_config, override_config import argparse import os from estimator.estimator_llm import LLMEstimator # General Training Parameters parser = argparse.ArgumentParser() parser.add_argument('--generation_config_path', default='config/config_diff/config_generation.yml', type=str, help='Configuration file path') parser.add_argument('--ranker_config_path', default='config/config_diff/config_ranking.yml', type=str, help='Configuration file path') parser.add_argument('--task_description', default='', required=False, type=str, help='Describing the task') parser.add_argument('--prompt', default='', required=False, type=str, help='Prompt to use as initial.') parser.add_argument('--load_dump', default='', required=False, type=str, help='In case of loading from checkpoint') parser.add_argument('--output_dump', default='dump', required=False, type=str, help='Output to save checkpoints') parser.add_argument('--num_ranker_steps', default=20, type=int, help='Number of iterations') parser.add_argument('--num_generation_steps', default=20, type=int, help='Number of iterations') opt = parser.parse_args() ranker_config_params = override_config(opt.ranker_config_path) generation_config_params = override_config(opt.generation_config_path) validate_generation_config(ranker_config_params, generation_config_params) if opt.task_description == '': task_description = input("Describe the task: ") else: task_description = opt.task_description if opt.prompt == '': initial_prompt = input("Initial prompt: ") else: initial_prompt = opt.prompt ranker_pipeline = OptimizationPipeline(ranker_config_params, output_path=os.path.join(opt.output_dump, 'ranker')) if opt.load_dump != '': ranker_pipeline.load_state(os.path.join(opt.load_dump, 'ranker')) ranker_pipeline.predictor.init_chain(ranker_config_params.dataset.label_schema) if (ranker_pipeline.cur_prompt is None) or (ranker_pipeline.task_description is None): ranker_mod_prompt, ranker_mod_task_desc = modify_input_for_ranker(ranker_config_params, task_description, initial_prompt) ranker_pipeline.cur_prompt = ranker_mod_prompt ranker_pipeline.task_description = ranker_mod_task_desc best_prompt = ranker_pipeline.run_pipeline(opt.num_ranker_steps) generation_config_params.eval.function_params = ranker_config_params.predictor.config generation_config_params.eval.function_params.instruction = best_prompt['prompt'] generation_config_params.eval.function_params.label_schema = ranker_config_params.dataset.label_schema generation_pipeline = OptimizationPipeline(generation_config_params, task_description, initial_prompt, output_path=os.path.join(opt.output_dump, 'generator')) if opt.load_dump != '': generation_pipeline.load_state(os.path.join(opt.load_dump, 'generator')) best_generation_prompt = generation_pipeline.run_pipeline(opt.num_generation_steps) print('\033[92m' + 'Calibrated prompt score:', str(best_generation_prompt['score']) + '\033[0m') print('\033[92m' + 'Calibrated prompt:', best_generation_prompt['prompt'] + '\033[0m')