File size: 27,761 Bytes
7db0ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
import json, copy, types
import os
from enum import Enum
import time
from typing import Callable, Optional, Any, Union
import litellm
from litellm.utils import ModelResponse, get_secret, Usage
from .prompt_templates.factory import prompt_factory, custom_prompt
import httpx


class BedrockError(Exception):
    def __init__(self, status_code, message):
        self.status_code = status_code
        self.message = message
        self.request = httpx.Request(
            method="POST", url="https://us-west-2.console.aws.amazon.com/bedrock"
        )
        self.response = httpx.Response(status_code=status_code, request=self.request)
        super().__init__(
            self.message
        )  # Call the base class constructor with the parameters it needs


class AmazonTitanConfig:
    """
    Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-text-express-v1

    Supported Params for the Amazon Titan models:

    - `maxTokenCount` (integer) max tokens,
    - `stopSequences` (string[]) list of stop sequence strings
    - `temperature` (float) temperature for model,
    - `topP` (int) top p for model
    """

    maxTokenCount: Optional[int] = None
    stopSequences: Optional[list] = None
    temperature: Optional[float] = None
    topP: Optional[int] = None

    def __init__(
        self,
        maxTokenCount: Optional[int] = None,
        stopSequences: Optional[list] = None,
        temperature: Optional[float] = None,
        topP: Optional[int] = None,
    ) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @classmethod
    def get_config(cls):
        return {
            k: v
            for k, v in cls.__dict__.items()
            if not k.startswith("__")
            and not isinstance(
                v,
                (
                    types.FunctionType,
                    types.BuiltinFunctionType,
                    classmethod,
                    staticmethod,
                ),
            )
            and v is not None
        }


class AmazonAnthropicConfig:
    """
    Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=claude

    Supported Params for the Amazon / Anthropic models:

    - `max_tokens_to_sample` (integer) max tokens,
    - `temperature` (float) model temperature,
    - `top_k` (integer) top k,
    - `top_p` (integer) top p,
    - `stop_sequences` (string[]) list of stop sequences - e.g. ["\\n\\nHuman:"],
    - `anthropic_version` (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
    """

    max_tokens_to_sample: Optional[int] = litellm.max_tokens
    stop_sequences: Optional[list] = None
    temperature: Optional[float] = None
    top_k: Optional[int] = None
    top_p: Optional[int] = None
    anthropic_version: Optional[str] = None

    def __init__(
        self,
        max_tokens_to_sample: Optional[int] = None,
        stop_sequences: Optional[list] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[int] = None,
        anthropic_version: Optional[str] = None,
    ) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @classmethod
    def get_config(cls):
        return {
            k: v
            for k, v in cls.__dict__.items()
            if not k.startswith("__")
            and not isinstance(
                v,
                (
                    types.FunctionType,
                    types.BuiltinFunctionType,
                    classmethod,
                    staticmethod,
                ),
            )
            and v is not None
        }


class AmazonCohereConfig:
    """
    Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=command

    Supported Params for the Amazon / Cohere models:

    - `max_tokens` (integer) max tokens,
    - `temperature` (float) model temperature,
    - `return_likelihood` (string) n/a
    """

    max_tokens: Optional[int] = None
    temperature: Optional[float] = None
    return_likelihood: Optional[str] = None

    def __init__(
        self,
        max_tokens: Optional[int] = None,
        temperature: Optional[float] = None,
        return_likelihood: Optional[str] = None,
    ) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @classmethod
    def get_config(cls):
        return {
            k: v
            for k, v in cls.__dict__.items()
            if not k.startswith("__")
            and not isinstance(
                v,
                (
                    types.FunctionType,
                    types.BuiltinFunctionType,
                    classmethod,
                    staticmethod,
                ),
            )
            and v is not None
        }


class AmazonAI21Config:
    """
    Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra

    Supported Params for the Amazon / AI21 models:

    - `maxTokens` (int32): The maximum number of tokens to generate per result. Optional, default is 16. If no `stopSequences` are given, generation stops after producing `maxTokens`.

    - `temperature` (float): Modifies the distribution from which tokens are sampled. Optional, default is 0.7. A value of 0 essentially disables sampling and results in greedy decoding.

    - `topP` (float): Used for sampling tokens from the corresponding top percentile of probability mass. Optional, default is 1. For instance, a value of 0.9 considers only tokens comprising the top 90% probability mass.

    - `stopSequences` (array of strings): Stops decoding if any of the input strings is generated. Optional.

    - `frequencyPenalty` (object): Placeholder for frequency penalty object.

    - `presencePenalty` (object): Placeholder for presence penalty object.

    - `countPenalty` (object): Placeholder for count penalty object.
    """

    maxTokens: Optional[int] = None
    temperature: Optional[float] = None
    topP: Optional[float] = None
    stopSequences: Optional[list] = None
    frequencePenalty: Optional[dict] = None
    presencePenalty: Optional[dict] = None
    countPenalty: Optional[dict] = None

    def __init__(
        self,
        maxTokens: Optional[int] = None,
        temperature: Optional[float] = None,
        topP: Optional[float] = None,
        stopSequences: Optional[list] = None,
        frequencePenalty: Optional[dict] = None,
        presencePenalty: Optional[dict] = None,
        countPenalty: Optional[dict] = None,
    ) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @classmethod
    def get_config(cls):
        return {
            k: v
            for k, v in cls.__dict__.items()
            if not k.startswith("__")
            and not isinstance(
                v,
                (
                    types.FunctionType,
                    types.BuiltinFunctionType,
                    classmethod,
                    staticmethod,
                ),
            )
            and v is not None
        }


class AnthropicConstants(Enum):
    HUMAN_PROMPT = "\n\nHuman: "
    AI_PROMPT = "\n\nAssistant: "


class AmazonLlamaConfig:
    """
    Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=meta.llama2-13b-chat-v1

    Supported Params for the Amazon / Meta Llama models:

    - `max_gen_len` (integer) max tokens,
    - `temperature` (float) temperature for model,
    - `top_p` (float) top p for model
    """

    max_gen_len: Optional[int] = None
    temperature: Optional[float] = None
    topP: Optional[float] = None

    def __init__(
        self,
        maxTokenCount: Optional[int] = None,
        temperature: Optional[float] = None,
        topP: Optional[int] = None,
    ) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @classmethod
    def get_config(cls):
        return {
            k: v
            for k, v in cls.__dict__.items()
            if not k.startswith("__")
            and not isinstance(
                v,
                (
                    types.FunctionType,
                    types.BuiltinFunctionType,
                    classmethod,
                    staticmethod,
                ),
            )
            and v is not None
        }


def init_bedrock_client(
    region_name=None,
    aws_access_key_id: Optional[str] = None,
    aws_secret_access_key: Optional[str] = None,
    aws_region_name: Optional[str] = None,
    aws_bedrock_runtime_endpoint: Optional[str] = None,
):
    # check for custom AWS_REGION_NAME and use it if not passed to init_bedrock_client
    litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
    standard_aws_region_name = get_secret("AWS_REGION", None)

    ## CHECK IS  'os.environ/' passed in
    # Define the list of parameters to check
    params_to_check = [
        aws_access_key_id,
        aws_secret_access_key,
        aws_region_name,
        aws_bedrock_runtime_endpoint,
    ]

    # Iterate over parameters and update if needed
    for i, param in enumerate(params_to_check):
        if param and param.startswith("os.environ/"):
            params_to_check[i] = get_secret(param)
    # Assign updated values back to parameters
    (
        aws_access_key_id,
        aws_secret_access_key,
        aws_region_name,
        aws_bedrock_runtime_endpoint,
    ) = params_to_check
    if region_name:
        pass
    elif aws_region_name:
        region_name = aws_region_name
    elif litellm_aws_region_name:
        region_name = litellm_aws_region_name
    elif standard_aws_region_name:
        region_name = standard_aws_region_name
    else:
        raise BedrockError(
            message="AWS region not set: set AWS_REGION_NAME or AWS_REGION env variable or in .env file",
            status_code=401,
        )

    # check for custom AWS_BEDROCK_RUNTIME_ENDPOINT and use it if not passed to init_bedrock_client
    env_aws_bedrock_runtime_endpoint = get_secret("AWS_BEDROCK_RUNTIME_ENDPOINT")
    if aws_bedrock_runtime_endpoint:
        endpoint_url = aws_bedrock_runtime_endpoint
    elif env_aws_bedrock_runtime_endpoint:
        endpoint_url = env_aws_bedrock_runtime_endpoint
    else:
        endpoint_url = f"https://bedrock-runtime.{region_name}.amazonaws.com"

    import boto3

    if aws_access_key_id != None:
        # uses auth params passed to completion
        # aws_access_key_id is not None, assume user is trying to auth using litellm.completion

        client = boto3.client(
            service_name="bedrock-runtime",
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            region_name=region_name,
            endpoint_url=endpoint_url,
        )
    else:
        # aws_access_key_id is None, assume user is trying to auth using env variables
        # boto3 automatically reads env variables

        client = boto3.client(
            service_name="bedrock-runtime",
            region_name=region_name,
            endpoint_url=endpoint_url,
        )

    return client


def convert_messages_to_prompt(model, messages, provider, custom_prompt_dict):
    # handle anthropic prompts using anthropic constants
    if provider == "anthropic":
        if model in custom_prompt_dict:
            # check if the model has a registered custom prompt
            model_prompt_details = custom_prompt_dict[model]
            prompt = custom_prompt(
                role_dict=model_prompt_details["roles"],
                initial_prompt_value=model_prompt_details["initial_prompt_value"],
                final_prompt_value=model_prompt_details["final_prompt_value"],
                messages=messages,
            )
        else:
            prompt = prompt_factory(
                model=model, messages=messages, custom_llm_provider="anthropic"
            )
    else:
        prompt = ""
        for message in messages:
            if "role" in message:
                if message["role"] == "user":
                    prompt += f"{message['content']}"
                else:
                    prompt += f"{message['content']}"
            else:
                prompt += f"{message['content']}"
    return prompt


"""
BEDROCK AUTH Keys/Vars
os.environ['AWS_ACCESS_KEY_ID'] = ""
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
"""


# set os.environ['AWS_REGION_NAME'] = <your-region_name>


def completion(
    model: str,
    messages: list,
    custom_prompt_dict: dict,
    model_response: ModelResponse,
    print_verbose: Callable,
    encoding,
    logging_obj,
    optional_params=None,
    litellm_params=None,
    logger_fn=None,
):
    exception_mapping_worked = False
    try:
        # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
        aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
        aws_access_key_id = optional_params.pop("aws_access_key_id", None)
        aws_region_name = optional_params.pop("aws_region_name", None)
        aws_bedrock_runtime_endpoint = optional_params.pop(
            "aws_bedrock_runtime_endpoint", None
        )

        # use passed in BedrockRuntime.Client if provided, otherwise create a new one
        client = optional_params.pop("aws_bedrock_client", None)

        # only init client, if user did not pass one
        if client is None:
            client = init_bedrock_client(
                aws_access_key_id=aws_access_key_id,
                aws_secret_access_key=aws_secret_access_key,
                aws_region_name=aws_region_name,
                aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
            )

        model = model
        modelId = (
            optional_params.pop("model_id", None) or model
        )  # default to model if not passed
        provider = model.split(".")[0]
        prompt = convert_messages_to_prompt(
            model, messages, provider, custom_prompt_dict
        )
        inference_params = copy.deepcopy(optional_params)
        stream = inference_params.pop("stream", False)
        if provider == "anthropic":
            ## LOAD CONFIG
            config = litellm.AmazonAnthropicConfig.get_config()
            for k, v in config.items():
                if (
                    k not in inference_params
                ):  # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
                    inference_params[k] = v
            data = json.dumps({"prompt": prompt, **inference_params})
        elif provider == "ai21":
            ## LOAD CONFIG
            config = litellm.AmazonAI21Config.get_config()
            for k, v in config.items():
                if (
                    k not in inference_params
                ):  # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
                    inference_params[k] = v

            data = json.dumps({"prompt": prompt, **inference_params})
        elif provider == "cohere":
            ## LOAD CONFIG
            config = litellm.AmazonCohereConfig.get_config()
            for k, v in config.items():
                if (
                    k not in inference_params
                ):  # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
                    inference_params[k] = v
            if optional_params.get("stream", False) == True:
                inference_params[
                    "stream"
                ] = True  # cohere requires stream = True in inference params
            data = json.dumps({"prompt": prompt, **inference_params})
        elif provider == "meta":
            ## LOAD CONFIG
            config = litellm.AmazonLlamaConfig.get_config()
            for k, v in config.items():
                if (
                    k not in inference_params
                ):  # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
                    inference_params[k] = v
            data = json.dumps({"prompt": prompt, **inference_params})
        elif provider == "amazon":  # amazon titan
            ## LOAD CONFIG
            config = litellm.AmazonTitanConfig.get_config()
            for k, v in config.items():
                if (
                    k not in inference_params
                ):  # completion(top_k=3) > amazon_config(top_k=3) <- allows for dynamic variables to be passed in
                    inference_params[k] = v

            data = json.dumps(
                {
                    "inputText": prompt,
                    "textGenerationConfig": inference_params,
                }
            )
        else:
            data = json.dumps({})

        ## COMPLETION CALL
        accept = "application/json"
        contentType = "application/json"
        if stream == True:
            if provider == "ai21":
                ## LOGGING
                request_str = f"""
                response = client.invoke_model(
                    body={data},
                    modelId={modelId},
                    accept=accept,
                    contentType=contentType
                )
                """
                logging_obj.pre_call(
                    input=prompt,
                    api_key="",
                    additional_args={
                        "complete_input_dict": data,
                        "request_str": request_str,
                    },
                )

                response = client.invoke_model(
                    body=data, modelId=modelId, accept=accept, contentType=contentType
                )

                response = response.get("body").read()
                return response
            else:
                ## LOGGING
                request_str = f"""
                response = client.invoke_model_with_response_stream(
                    body={data},
                    modelId={modelId},
                    accept=accept,
                    contentType=contentType
                )
                """
                logging_obj.pre_call(
                    input=prompt,
                    api_key="",
                    additional_args={
                        "complete_input_dict": data,
                        "request_str": request_str,
                    },
                )

                response = client.invoke_model_with_response_stream(
                    body=data, modelId=modelId, accept=accept, contentType=contentType
                )
                response = response.get("body")
                return response
        try:
            ## LOGGING
            request_str = f"""
            response = client.invoke_model(
                body={data},
                modelId={modelId},
                accept=accept,
                contentType=contentType
            )
            """
            logging_obj.pre_call(
                input=prompt,
                api_key="",
                additional_args={
                    "complete_input_dict": data,
                    "request_str": request_str,
                },
            )
            response = client.invoke_model(
                body=data, modelId=modelId, accept=accept, contentType=contentType
            )
        except client.exceptions.ValidationException as e:
            if "The provided model identifier is invalid" in str(e):
                raise BedrockError(status_code=404, message=str(e))
            raise BedrockError(status_code=400, message=str(e))
        except Exception as e:
            raise BedrockError(status_code=500, message=str(e))

        response_body = json.loads(response.get("body").read())

        ## LOGGING
        logging_obj.post_call(
            input=prompt,
            api_key="",
            original_response=json.dumps(response_body),
            additional_args={"complete_input_dict": data},
        )
        print_verbose(f"raw model_response: {response}")
        ## RESPONSE OBJECT
        outputText = "default"
        if provider == "ai21":
            outputText = response_body.get("completions")[0].get("data").get("text")
        elif provider == "anthropic":
            outputText = response_body["completion"]
            model_response["finish_reason"] = response_body["stop_reason"]
        elif provider == "cohere":
            outputText = response_body["generations"][0]["text"]
        elif provider == "meta":
            outputText = response_body["generation"]
        else:  # amazon titan
            outputText = response_body.get("results")[0].get("outputText")

        response_metadata = response.get("ResponseMetadata", {})
        if response_metadata.get("HTTPStatusCode", 500) >= 400:
            raise BedrockError(
                message=outputText,
                status_code=response_metadata.get("HTTPStatusCode", 500),
            )
        else:
            try:
                if len(outputText) > 0:
                    model_response["choices"][0]["message"]["content"] = outputText
            except:
                raise BedrockError(
                    message=json.dumps(outputText),
                    status_code=response_metadata.get("HTTPStatusCode", 500),
                )

        ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
        prompt_tokens = len(encoding.encode(prompt))
        completion_tokens = len(
            encoding.encode(model_response["choices"][0]["message"].get("content", ""))
        )

        model_response["created"] = int(time.time())
        model_response["model"] = model
        usage = Usage(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=prompt_tokens + completion_tokens,
        )
        model_response.usage = usage
        return model_response
    except BedrockError as e:
        exception_mapping_worked = True
        raise e
    except Exception as e:
        if exception_mapping_worked:
            raise e
        else:
            import traceback

            raise BedrockError(status_code=500, message=traceback.format_exc())


def _embedding_func_single(
    model: str,
    input: str,
    client: Any,
    optional_params=None,
    encoding=None,
    logging_obj=None,
):
    # logic for parsing in - calling - parsing out model embedding calls
    ## FORMAT EMBEDDING INPUT ##
    provider = model.split(".")[0]
    inference_params = copy.deepcopy(optional_params)
    inference_params.pop(
        "user", None
    )  # make sure user is not passed in for bedrock call
    modelId = (
        optional_params.pop("model_id", None) or model
    )  # default to model if not passed
    if provider == "amazon":
        input = input.replace(os.linesep, " ")
        data = {"inputText": input, **inference_params}
        # data = json.dumps(data)
    elif provider == "cohere":
        inference_params["input_type"] = inference_params.get(
            "input_type", "search_document"
        )  # aws bedrock example default - https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.embed-english-v3
        data = {"texts": [input], **inference_params}  # type: ignore
    body = json.dumps(data).encode("utf-8")
    ## LOGGING
    request_str = f"""
    response = client.invoke_model(
        body={body},
        modelId={modelId},
        accept="*/*",
        contentType="application/json",
    )"""  # type: ignore
    logging_obj.pre_call(
        input=input,
        api_key="",  # boto3 is used for init.
        additional_args={
            "complete_input_dict": {"model": modelId, "texts": input},
            "request_str": request_str,
        },
    )
    try:
        response = client.invoke_model(
            body=body,
            modelId=modelId,
            accept="*/*",
            contentType="application/json",
        )
        response_body = json.loads(response.get("body").read())
        ## LOGGING
        logging_obj.post_call(
            input=input,
            api_key="",
            additional_args={"complete_input_dict": data},
            original_response=json.dumps(response_body),
        )
        if provider == "cohere":
            response = response_body.get("embeddings")
            # flatten list
            response = [item for sublist in response for item in sublist]
            return response
        elif provider == "amazon":
            return response_body.get("embedding")
    except Exception as e:
        raise BedrockError(
            message=f"Embedding Error with model {model}: {e}", status_code=500
        )


def embedding(
    model: str,
    input: Union[list, str],
    api_key: Optional[str] = None,
    logging_obj=None,
    model_response=None,
    optional_params=None,
    encoding=None,
):
    ### BOTO3 INIT ###
    # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
    aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
    aws_access_key_id = optional_params.pop("aws_access_key_id", None)
    aws_region_name = optional_params.pop("aws_region_name", None)
    aws_bedrock_runtime_endpoint = optional_params.pop(
        "aws_bedrock_runtime_endpoint", None
    )

    # use passed in BedrockRuntime.Client if provided, otherwise create a new one
    client = init_bedrock_client(
        aws_access_key_id=aws_access_key_id,
        aws_secret_access_key=aws_secret_access_key,
        aws_region_name=aws_region_name,
        aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
    )
    if type(input) == str:
        embeddings = [
            _embedding_func_single(
                model,
                input,
                optional_params=optional_params,
                client=client,
                logging_obj=logging_obj,
            )
        ]
    else:
        ## Embedding Call
        embeddings = [
            _embedding_func_single(
                model,
                i,
                optional_params=optional_params,
                client=client,
                logging_obj=logging_obj,
            )
            for i in input
        ]  # [TODO]: make these parallel calls

    ## Populate OpenAI compliant dictionary
    embedding_response = []
    for idx, embedding in enumerate(embeddings):
        embedding_response.append(
            {
                "object": "embedding",
                "index": idx,
                "embedding": embedding,
            }
        )
    model_response["object"] = "list"
    model_response["data"] = embedding_response
    model_response["model"] = model
    input_tokens = 0

    input_str = "".join(input)

    input_tokens += len(encoding.encode(input_str))

    usage = Usage(
        prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens + 0
    )
    model_response.usage = usage

    return model_response