Spaces:
Sleeping
Sleeping
File size: 16,439 Bytes
7db0ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
import click
import subprocess, traceback, json
import os, sys
import random
from datetime import datetime
import importlib
from dotenv import load_dotenv
sys.path.append(os.getcwd())
config_filename = "litellm.secrets"
load_dotenv()
from importlib import resources
import shutil
telemetry = None
def run_ollama_serve():
try:
command = ["ollama", "serve"]
with open(os.devnull, "w") as devnull:
process = subprocess.Popen(command, stdout=devnull, stderr=devnull)
except Exception as e:
print(
f"""
LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve`
"""
) # noqa
def is_port_in_use(port):
import socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(("localhost", port)) == 0
@click.command()
@click.option("--host", default="0.0.0.0", help="Host for the server to listen on.")
@click.option("--port", default=8000, help="Port to bind the server to.")
@click.option("--num_workers", default=1, help="Number of gunicorn workers to spin up")
@click.option("--api_base", default=None, help="API base URL.")
@click.option(
"--api_version",
default="2023-07-01-preview",
help="For azure - pass in the api version.",
)
@click.option(
"--model", "-m", default=None, help="The model name to pass to litellm expects"
)
@click.option(
"--alias",
default=None,
help='The alias for the model - use this to give a litellm model name (e.g. "huggingface/codellama/CodeLlama-7b-Instruct-hf") a more user-friendly name ("codellama")',
)
@click.option(
"--add_key", default=None, help="The model name to pass to litellm expects"
)
@click.option("--headers", default=None, help="headers for the API call")
@click.option("--save", is_flag=True, type=bool, help="Save the model-specific config")
@click.option(
"--debug", default=False, is_flag=True, type=bool, help="To debug the input"
)
@click.option(
"--detailed_debug",
default=False,
is_flag=True,
type=bool,
help="To view detailed debug logs",
)
@click.option(
"--use_queue",
default=False,
is_flag=True,
type=bool,
help="To use celery workers for async endpoints",
)
@click.option(
"--temperature", default=None, type=float, help="Set temperature for the model"
)
@click.option(
"--max_tokens", default=None, type=int, help="Set max tokens for the model"
)
@click.option(
"--request_timeout",
default=600,
type=int,
help="Set timeout in seconds for completion calls",
)
@click.option("--drop_params", is_flag=True, help="Drop any unmapped params")
@click.option(
"--add_function_to_prompt",
is_flag=True,
help="If function passed but unsupported, pass it as prompt",
)
@click.option(
"--config",
"-c",
default=None,
help="Path to the proxy configuration file (e.g. config.yaml). Usage `litellm --config config.yaml`",
)
@click.option(
"--max_budget",
default=None,
type=float,
help="Set max budget for API calls - works for hosted models like OpenAI, TogetherAI, Anthropic, etc.`",
)
@click.option(
"--telemetry",
default=True,
type=bool,
help="Helps us know if people are using this feature. Turn this off by doing `--telemetry False`",
)
@click.option(
"--version",
"-v",
default=False,
is_flag=True,
type=bool,
help="Print LiteLLM version",
)
@click.option(
"--health",
flag_value=True,
help="Make a chat/completions request to all llms in config.yaml",
)
@click.option(
"--test",
flag_value=True,
help="proxy chat completions url to make a test request to",
)
@click.option(
"--test_async",
default=False,
is_flag=True,
help="Calls async endpoints /queue/requests and /queue/response",
)
@click.option(
"--num_requests",
default=10,
type=int,
help="Number of requests to hit async endpoint with",
)
@click.option("--local", is_flag=True, default=False, help="for local debugging")
def run_server(
host,
port,
api_base,
api_version,
model,
alias,
add_key,
headers,
save,
debug,
detailed_debug,
temperature,
max_tokens,
request_timeout,
drop_params,
add_function_to_prompt,
config,
max_budget,
telemetry,
test,
local,
num_workers,
test_async,
num_requests,
use_queue,
health,
version,
):
global feature_telemetry
args = locals()
if local:
from proxy_server import app, save_worker_config, usage_telemetry
else:
try:
from .proxy_server import app, save_worker_config, usage_telemetry
except ImportError as e:
if "litellm[proxy]" in str(e):
# user is missing a proxy dependency, ask them to pip install litellm[proxy]
raise e
else:
# this is just a local/relative import error, user git cloned litellm
from proxy_server import app, save_worker_config, usage_telemetry
feature_telemetry = usage_telemetry
if version == True:
pkg_version = importlib.metadata.version("litellm")
click.echo(f"\nLiteLLM: Current Version = {pkg_version}\n")
return
if model and "ollama" in model and api_base is None:
run_ollama_serve()
if test_async is True:
import requests, concurrent, time
api_base = f"http://{host}:{port}"
def _make_openai_completion():
data = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "Write a short poem about the moon"}
],
}
response = requests.post("http://0.0.0.0:8000/queue/request", json=data)
response = response.json()
while True:
try:
url = response["url"]
polling_url = f"{api_base}{url}"
polling_response = requests.get(polling_url)
polling_response = polling_response.json()
print("\n RESPONSE FROM POLLING JOB", polling_response)
status = polling_response["status"]
if status == "finished":
llm_response = polling_response["result"]
break
print(
f"POLLING JOB{polling_url}\nSTATUS: {status}, \n Response {polling_response}"
) # noqa
time.sleep(0.5)
except Exception as e:
print("got exception in polling", e)
break
# Number of concurrent calls (you can adjust this)
concurrent_calls = num_requests
# List to store the futures of concurrent calls
futures = []
start_time = time.time()
# Make concurrent calls
with concurrent.futures.ThreadPoolExecutor(
max_workers=concurrent_calls
) as executor:
for _ in range(concurrent_calls):
futures.append(executor.submit(_make_openai_completion))
# Wait for all futures to complete
concurrent.futures.wait(futures)
# Summarize the results
successful_calls = 0
failed_calls = 0
for future in futures:
if future.done():
if future.result() is not None:
successful_calls += 1
else:
failed_calls += 1
end_time = time.time()
print(f"Elapsed Time: {end_time-start_time}")
print(f"Load test Summary:")
print(f"Total Requests: {concurrent_calls}")
print(f"Successful Calls: {successful_calls}")
print(f"Failed Calls: {failed_calls}")
return
if health != False:
import requests
print("\nLiteLLM: Health Testing models in config")
response = requests.get(url=f"http://{host}:{port}/health")
print(json.dumps(response.json(), indent=4))
return
if test != False:
request_model = model or "gpt-3.5-turbo"
click.echo(
f"\nLiteLLM: Making a test ChatCompletions request to your proxy. Model={request_model}"
)
import openai
if test == True: # flag value set
api_base = f"http://{host}:{port}"
else:
api_base = test
client = openai.OpenAI(api_key="My API Key", base_url=api_base)
response = client.chat.completions.create(
model=request_model,
messages=[
{
"role": "user",
"content": "this is a test request, write a short poem",
}
],
max_tokens=256,
)
click.echo(f"\nLiteLLM: response from proxy {response}")
print(
f"\n LiteLLM: Making a test ChatCompletions + streaming request to proxy. Model={request_model}"
)
response = client.chat.completions.create(
model=request_model,
messages=[
{
"role": "user",
"content": "this is a test request, write a short poem",
}
],
stream=True,
)
for chunk in response:
click.echo(f"LiteLLM: streaming response from proxy {chunk}")
print("\n making completion request to proxy")
response = client.completions.create(
model=request_model, prompt="this is a test request, write a short poem"
)
print(response)
return
else:
if headers:
headers = json.loads(headers)
save_worker_config(
model=model,
alias=alias,
api_base=api_base,
api_version=api_version,
debug=debug,
detailed_debug=detailed_debug,
temperature=temperature,
max_tokens=max_tokens,
request_timeout=request_timeout,
max_budget=max_budget,
telemetry=telemetry,
drop_params=drop_params,
add_function_to_prompt=add_function_to_prompt,
headers=headers,
save=save,
config=config,
use_queue=use_queue,
)
try:
import uvicorn
if os.name == "nt":
pass
else:
import gunicorn.app.base
except:
raise ImportError(
"Uvicorn, gunicorn needs to be imported. Run - `pip 'litellm[proxy]'`"
)
if config is not None:
"""
Allow user to pass in db url via config
read from there and save it to os.env['DATABASE_URL']
"""
try:
import yaml
except:
raise ImportError(
"yaml needs to be imported. Run - `pip install 'litellm[proxy]'`"
)
if os.path.exists(config):
with open(config, "r") as config_file:
config = yaml.safe_load(config_file)
general_settings = config.get("general_settings", {})
database_url = general_settings.get("database_url", None)
if database_url and database_url.startswith("os.environ/"):
original_dir = os.getcwd()
# set the working directory to where this script is
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path - for litellm local dev
import litellm
database_url = litellm.get_secret(database_url)
os.chdir(original_dir)
if database_url is not None and isinstance(database_url, str):
os.environ["DATABASE_URL"] = database_url
if os.getenv("DATABASE_URL", None) is not None:
try:
subprocess.run(["prisma"], capture_output=True)
is_prisma_runnable = True
except FileNotFoundError:
is_prisma_runnable = False
if is_prisma_runnable:
# run prisma db push, before starting server
# Save the current working directory
original_dir = os.getcwd()
# set the working directory to where this script is
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
try:
subprocess.run(
["prisma", "db", "push", "--accept-data-loss"]
) # this looks like a weird edge case when prisma just wont start on render. we need to have the --accept-data-loss
finally:
os.chdir(original_dir)
else:
print(
f"Unable to connect to DB. DATABASE_URL found in environment, but prisma package not found."
)
if port == 8000 and is_port_in_use(port):
port = random.randint(1024, 49152)
from litellm.proxy.proxy_server import app
if os.name == "nt":
uvicorn.run(app, host=host, port=port) # run uvicorn
else:
import gunicorn.app.base
# Gunicorn Application Class
class StandaloneApplication(gunicorn.app.base.BaseApplication):
def __init__(self, app, options=None):
self.options = options or {} # gunicorn options
self.application = app # FastAPI app
super().__init__()
_endpoint_str = (
f"curl --location 'http://0.0.0.0:{port}/chat/completions' \\"
)
curl_command = (
_endpoint_str
+ """
--header 'Content-Type: application/json' \\
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
\n
"""
)
print() # noqa
print( # noqa
f'\033[1;34mLiteLLM: Test your local proxy with: "litellm --test" This runs an openai.ChatCompletion request to your proxy [In a new terminal tab]\033[0m\n'
)
print( # noqa
f"\033[1;34mLiteLLM: Curl Command Test for your local proxy\n {curl_command} \033[0m\n"
)
print(
"\033[1;34mDocs: https://docs.litellm.ai/docs/simple_proxy\033[0m\n"
) # noqa
print( # noqa
f"\033[1;34mSee all Router/Swagger docs on http://0.0.0.0:{port} \033[0m\n"
) # noqa
def load_config(self):
# note: This Loads the gunicorn config - has nothing to do with LiteLLM Proxy config
config = {
key: value
for key, value in self.options.items()
if key in self.cfg.settings and value is not None
}
for key, value in config.items():
self.cfg.set(key.lower(), value)
def load(self):
# gunicorn app function
return self.application
gunicorn_options = {
"bind": f"{host}:{port}",
"workers": num_workers, # default is 1
"worker_class": "uvicorn.workers.UvicornWorker",
"preload": True, # Add the preload flag,
"accesslog": "-", # Log to stdout
"access_log_format": '%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s',
}
StandaloneApplication(
app=app, options=gunicorn_options
).run() # Run gunicorn
if __name__ == "__main__":
run_server()
|