Spaces:
Sleeping
Sleeping
File size: 10,589 Bytes
7db0ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import json
import sys
import os
import io, asyncio
import logging
logging.basicConfig(level=logging.DEBUG)
sys.path.insert(0, os.path.abspath("../.."))
from litellm import completion
import litellm
litellm.num_retries = 3
litellm.success_callback = ["langfuse"]
os.environ["LANGFUSE_DEBUG"] = "True"
import time
import pytest
def search_logs(log_file_path, num_good_logs=1):
"""
Searches the given log file for logs containing the "/api/public" string.
Parameters:
- log_file_path (str): The path to the log file to be searched.
Returns:
- None
Raises:
- Exception: If there are any bad logs found in the log file.
"""
import re
print("\n searching logs")
bad_logs = []
good_logs = []
all_logs = []
try:
with open(log_file_path, "r") as log_file:
lines = log_file.readlines()
print(f"searching logslines: {lines}")
for line in lines:
all_logs.append(line.strip())
if "/api/public" in line:
print("Found log with /api/public:")
print(line.strip())
print("\n\n")
match = re.search(
r'"POST /api/public/ingestion HTTP/1.1" (\d+) (\d+)',
line,
)
if match:
status_code = int(match.group(1))
print("STATUS CODE", status_code)
if (
status_code != 200
and status_code != 201
and status_code != 207
):
print("got a BAD log")
bad_logs.append(line.strip())
else:
good_logs.append(line.strip())
print("\nBad Logs")
print(bad_logs)
if len(bad_logs) > 0:
raise Exception(f"bad logs, Bad logs = {bad_logs}")
assert (
len(good_logs) == num_good_logs
), f"Did not get expected number of good logs, expected {num_good_logs}, got {len(good_logs)}. All logs \n {all_logs}"
print("\nGood Logs")
print(good_logs)
if len(good_logs) <= 0:
raise Exception(
f"There were no Good Logs from Langfuse. No logs with /api/public status 200. \nAll logs:{all_logs}"
)
except Exception as e:
raise e
def pre_langfuse_setup():
"""
Set up the logging for the 'pre_langfuse_setup' function.
"""
# sends logs to langfuse.log
import logging
# Configure the logging to write to a file
logging.basicConfig(filename="langfuse.log", level=logging.DEBUG)
logger = logging.getLogger()
# Add a FileHandler to the logger
file_handler = logging.FileHandler("langfuse.log", mode="w")
file_handler.setLevel(logging.DEBUG)
logger.addHandler(file_handler)
return
@pytest.mark.skip(reason="beta test - checking langfuse output")
def test_langfuse_logging_async():
try:
pre_langfuse_setup()
litellm.set_verbose = True
litellm.success_callback = ["langfuse"]
async def _test_langfuse():
response = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=[{"role": "user", "content": "This is a test"}],
max_tokens=100,
temperature=0.7,
timeout=5,
user="test_user",
)
await asyncio.sleep(1)
return response
response = asyncio.run(_test_langfuse())
print(f"response: {response}")
# # check langfuse.log to see if there was a failed response
search_logs("langfuse.log")
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
# def test_langfuse_logging_async_text_completion():
# try:
# pre_langfuse_setup()
# litellm.set_verbose = False
# litellm.success_callback = ["langfuse"]
# async def _test_langfuse():
# response = await litellm.atext_completion(
# model="gpt-3.5-turbo-instruct",
# prompt="this is a test",
# max_tokens=5,
# temperature=0.7,
# timeout=5,
# user="test_user",
# stream=True
# )
# async for chunk in response:
# print()
# print(chunk)
# await asyncio.sleep(1)
# return response
# response = asyncio.run(_test_langfuse())
# print(f"response: {response}")
# # # check langfuse.log to see if there was a failed response
# search_logs("langfuse.log")
# except litellm.Timeout as e:
# pass
# except Exception as e:
# pytest.fail(f"An exception occurred - {e}")
# test_langfuse_logging_async_text_completion()
@pytest.mark.skip(reason="beta test - checking langfuse output")
def test_langfuse_logging():
try:
pre_langfuse_setup()
litellm.set_verbose = True
response = completion(
model="claude-instant-1.2",
messages=[{"role": "user", "content": "Hi 👋 - i'm claude"}],
max_tokens=10,
temperature=0.2,
)
print(response)
# time.sleep(5)
# # check langfuse.log to see if there was a failed response
# search_logs("langfuse.log")
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
# test_langfuse_logging()
@pytest.mark.skip(reason="beta test - checking langfuse output")
def test_langfuse_logging_stream():
try:
litellm.set_verbose = True
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "this is a streaming test for llama2 + langfuse",
}
],
max_tokens=20,
temperature=0.2,
stream=True,
)
print(response)
for chunk in response:
pass
# print(chunk)
except litellm.Timeout as e:
pass
except Exception as e:
print(e)
# test_langfuse_logging_stream()
@pytest.mark.skip(reason="beta test - checking langfuse output")
def test_langfuse_logging_custom_generation_name():
try:
litellm.set_verbose = True
response = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hi 👋 - i'm claude"}],
max_tokens=10,
metadata={
"langfuse/foo": "bar",
"langsmith/fizz": "buzz",
"prompt_hash": "asdf98u0j9131123",
"generation_name": "ishaan-test-generation",
"generation_id": "gen-id22",
"trace_id": "trace-id22",
"trace_user_id": "user-id2",
},
)
print(response)
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
print(e)
test_langfuse_logging_custom_generation_name()
@pytest.mark.skip(reason="beta test - checking langfuse output")
def test_langfuse_logging_function_calling():
litellm.set_verbose = True
function1 = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
]
try:
response = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what's the weather in boston"}],
temperature=0.1,
functions=function1,
)
print(response)
except litellm.Timeout as e:
pass
except Exception as e:
print(e)
# test_langfuse_logging_function_calling()
def test_langfuse_logging_tool_calling():
litellm.set_verbose = True
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps(
{"location": "Tokyo", "temperature": "10", "unit": "celsius"}
)
elif "san francisco" in location.lower():
return json.dumps(
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
)
elif "paris" in location.lower():
return json.dumps(
{"location": "Paris", "temperature": "22", "unit": "celsius"}
)
else:
return json.dumps({"location": location, "temperature": "unknown"})
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
}
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
# test_langfuse_logging_tool_calling()
|