File size: 17,211 Bytes
7db0ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import sys, os
import traceback
from dotenv import load_dotenv

load_dotenv()
import os, io

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system path
import pytest, asyncio
import litellm
from litellm import embedding, completion, completion_cost, Timeout, acompletion
from litellm import RateLimitError
import json
import os
import tempfile

litellm.num_retries = 3
litellm.cache = None
user_message = "Write a short poem about the sky"
messages = [{"content": user_message, "role": "user"}]


def load_vertex_ai_credentials():
    # Define the path to the vertex_key.json file
    print("loading vertex ai credentials")
    filepath = os.path.dirname(os.path.abspath(__file__))
    vertex_key_path = filepath + "/vertex_key.json"

    # Read the existing content of the file or create an empty dictionary
    try:
        with open(vertex_key_path, "r") as file:
            # Read the file content
            print("Read vertexai file path")
            content = file.read()

            # If the file is empty or not valid JSON, create an empty dictionary
            if not content or not content.strip():
                service_account_key_data = {}
            else:
                # Attempt to load the existing JSON content
                file.seek(0)
                service_account_key_data = json.load(file)
    except FileNotFoundError:
        # If the file doesn't exist, create an empty dictionary
        service_account_key_data = {}

    # Update the service_account_key_data with environment variables
    private_key_id = os.environ.get("VERTEX_AI_PRIVATE_KEY_ID", "")
    private_key = os.environ.get("VERTEX_AI_PRIVATE_KEY", "")
    private_key = private_key.replace("\\n", "\n")
    service_account_key_data["private_key_id"] = private_key_id
    service_account_key_data["private_key"] = private_key

    # Create a temporary file
    with tempfile.NamedTemporaryFile(mode="w+", delete=False) as temp_file:
        # Write the updated content to the temporary file
        json.dump(service_account_key_data, temp_file, indent=2)

    # Export the temporary file as GOOGLE_APPLICATION_CREDENTIALS
    os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.path.abspath(temp_file.name)


@pytest.mark.asyncio
async def get_response():
    load_vertex_ai_credentials()
    prompt = '\ndef count_nums(arr):\n    """\n    Write a function count_nums which takes an array of integers and returns\n    the number of elements which has a sum of digits > 0.\n    If a number is negative, then its first signed digit will be negative:\n    e.g. -123 has signed digits -1, 2, and 3.\n    >>> count_nums([]) == 0\n    >>> count_nums([-1, 11, -11]) == 1\n    >>> count_nums([1, 1, 2]) == 3\n    """\n'
    try:
        response = await acompletion(
            model="gemini-pro",
            messages=[
                {
                    "role": "system",
                    "content": "Complete the given code with no more explanation. Remember that there is a 4-space indent before the first line of your generated code.",
                },
                {"role": "user", "content": prompt},
            ],
        )
        return response
    except litellm.UnprocessableEntityError as e:
        pass
    except Exception as e:
        pytest.fail(f"An error occurred - {str(e)}")


def test_vertex_ai():
    import random

    load_vertex_ai_credentials()
    test_models = (
        litellm.vertex_chat_models
        + litellm.vertex_code_chat_models
        + litellm.vertex_text_models
        + litellm.vertex_code_text_models
    )
    litellm.set_verbose = False
    litellm.vertex_project = "reliablekeys"

    test_models = random.sample(test_models, 1)
    # test_models += litellm.vertex_language_models  # always test gemini-pro
    test_models = litellm.vertex_language_models  # always test gemini-pro
    for model in test_models:
        try:
            if model in [
                "code-gecko",
                "code-gecko@001",
                "code-gecko@002",
                "code-gecko@latest",
                "code-bison@001",
                "text-bison@001",
            ]:
                # our account does not have access to this model
                continue
            print("making request", model)
            response = completion(
                model=model,
                messages=[{"role": "user", "content": "hi"}],
                temperature=0.7,
            )
            print("\nModel Response", response)
            print(response)
            assert type(response.choices[0].message.content) == str
            assert len(response.choices[0].message.content) > 1
        except Exception as e:
            pytest.fail(f"Error occurred: {e}")


# test_vertex_ai()


def test_vertex_ai_stream():
    load_vertex_ai_credentials()
    litellm.set_verbose = False
    litellm.vertex_project = "reliablekeys"
    import random

    test_models = (
        litellm.vertex_chat_models
        + litellm.vertex_code_chat_models
        + litellm.vertex_text_models
        + litellm.vertex_code_text_models
    )
    test_models = random.sample(test_models, 1)
    test_models += litellm.vertex_language_models  # always test gemini-pro
    for model in test_models:
        try:
            if model in [
                "code-gecko",
                "code-gecko@001",
                "code-gecko@002",
                "code-gecko@latest",
                "code-bison@001",
                "text-bison@001",
            ]:
                # our account does not have access to this model
                continue
            print("making request", model)
            response = completion(
                model=model,
                messages=[
                    {"role": "user", "content": "write 10 line code code for saying hi"}
                ],
                stream=True,
            )
            completed_str = ""
            for chunk in response:
                print(chunk)
                content = chunk.choices[0].delta.content or ""
                print("\n content", content)
                completed_str += content
                assert type(content) == str
                # pass
            assert len(completed_str) > 4
        except Exception as e:
            pytest.fail(f"Error occurred: {e}")


# test_vertex_ai_stream()


@pytest.mark.asyncio
async def test_async_vertexai_response():
    import random

    load_vertex_ai_credentials()
    test_models = (
        litellm.vertex_chat_models
        + litellm.vertex_code_chat_models
        + litellm.vertex_text_models
        + litellm.vertex_code_text_models
    )
    test_models = random.sample(test_models, 1)
    test_models += litellm.vertex_language_models  # always test gemini-pro
    for model in test_models:
        print(f"model being tested in async call: {model}")
        if model in [
            "code-gecko",
            "code-gecko@001",
            "code-gecko@002",
            "code-gecko@latest",
            "code-bison@001",
            "text-bison@001",
        ]:
            # our account does not have access to this model
            continue
        try:
            user_message = "Hello, how are you?"
            messages = [{"content": user_message, "role": "user"}]
            response = await acompletion(
                model=model, messages=messages, temperature=0.7, timeout=5
            )
            print(f"response: {response}")
        except litellm.Timeout as e:
            pass
        except Exception as e:
            pytest.fail(f"An exception occurred: {e}")


# asyncio.run(test_async_vertexai_response())


@pytest.mark.asyncio
async def test_async_vertexai_streaming_response():
    import random

    load_vertex_ai_credentials()
    test_models = (
        litellm.vertex_chat_models
        + litellm.vertex_code_chat_models
        + litellm.vertex_text_models
        + litellm.vertex_code_text_models
    )
    test_models = random.sample(test_models, 1)
    test_models += litellm.vertex_language_models  # always test gemini-pro
    for model in test_models:
        if model in [
            "code-gecko",
            "code-gecko@001",
            "code-gecko@002",
            "code-gecko@latest",
            "code-bison@001",
            "text-bison@001",
        ]:
            # our account does not have access to this model
            continue
        try:
            user_message = "Hello, how are you?"
            messages = [{"content": user_message, "role": "user"}]
            response = await acompletion(
                model="gemini-pro",
                messages=messages,
                temperature=0.7,
                timeout=5,
                stream=True,
            )
            print(f"response: {response}")
            complete_response = ""
            async for chunk in response:
                print(f"chunk: {chunk}")
                complete_response += chunk.choices[0].delta.content
            print(f"complete_response: {complete_response}")
            assert len(complete_response) > 0
        except litellm.Timeout as e:
            pass
        except Exception as e:
            print(e)
            pytest.fail(f"An exception occurred: {e}")


# asyncio.run(test_async_vertexai_streaming_response())


def test_gemini_pro_vision():
    try:
        load_vertex_ai_credentials()
        litellm.set_verbose = True
        litellm.num_retries = 0
        resp = litellm.completion(
            model="vertex_ai/gemini-pro-vision",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Whats in this image?"},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": "gs://cloud-samples-data/generative-ai/image/boats.jpeg"
                            },
                        },
                    ],
                }
            ],
        )
        print(resp)

        prompt_tokens = resp.usage.prompt_tokens

        # DO Not DELETE this ASSERT
        # Google counts the prompt tokens for us, we should ensure we use the tokens from the orignal response
        assert prompt_tokens == 263  # the gemini api returns 263 to us

    except Exception as e:
        import traceback

        traceback.print_exc()
        raise e


# test_gemini_pro_vision()


def gemini_pro_function_calling():
    load_vertex_ai_credentials()
    tools = [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather in a given location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                    },
                    "required": ["location"],
                },
            },
        }
    ]
    messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
    completion = litellm.completion(
        model="gemini-pro", messages=messages, tools=tools, tool_choice="auto"
    )
    print(f"completion: {completion}")


# gemini_pro_function_calling()


async def gemini_pro_async_function_calling():
    load_vertex_ai_credentials()
    tools = [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather in a given location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                    },
                    "required": ["location"],
                },
            },
        }
    ]
    messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
    completion = await litellm.acompletion(
        model="gemini-pro", messages=messages, tools=tools, tool_choice="auto"
    )
    print(f"completion: {completion}")


asyncio.run(gemini_pro_async_function_calling())

# Extra gemini Vision tests for completion + stream, async, async + stream
# if we run into issues with gemini, we will also add these to our ci/cd pipeline
# def test_gemini_pro_vision_stream():
#     try:
#         litellm.set_verbose = False
#         litellm.num_retries=0
#         print("streaming response from gemini-pro-vision")
#         resp = litellm.completion(
#             model = "vertex_ai/gemini-pro-vision",
#             messages=[
#                 {
#                     "role": "user",
#                     "content": [
#                                     {
#                                         "type": "text",
#                                         "text": "Whats in this image?"
#                                     },
#                                     {
#                                         "type": "image_url",
#                                         "image_url": {
#                                         "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
#                                         }
#                                     }
#                                 ]
#                 }
#             ],
#             stream=True
#         )
#         print(resp)
#         for chunk in resp:
#             print(chunk)
#     except Exception as e:
#         import traceback
#         traceback.print_exc()
#         raise e
# test_gemini_pro_vision_stream()

# def test_gemini_pro_vision_async():
#     try:
#         litellm.set_verbose = True
#         litellm.num_retries=0
#         async def test():
#             resp = await litellm.acompletion(
#                 model = "vertex_ai/gemini-pro-vision",
#                 messages=[
#                     {
#                         "role": "user",
#                         "content": [
#                                         {
#                                             "type": "text",
#                                             "text": "Whats in this image?"
#                                         },
#                                         {
#                                             "type": "image_url",
#                                             "image_url": {
#                                             "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
#                                             }
#                                         }
#                                     ]
#                     }
#                 ],
#             )
#             print("async response gemini pro vision")
#             print(resp)
#         asyncio.run(test())
#     except Exception as e:
#         import traceback
#         traceback.print_exc()
#         raise e
# test_gemini_pro_vision_async()


# def test_gemini_pro_vision_async_stream():
#     try:
#         litellm.set_verbose = True
#         litellm.num_retries=0
#         async def test():
#             resp = await litellm.acompletion(
#                 model = "vertex_ai/gemini-pro-vision",
#                 messages=[
#                     {
#                         "role": "user",
#                         "content": [
#                                         {
#                                             "type": "text",
#                                             "text": "Whats in this image?"
#                                         },
#                                         {
#                                             "type": "image_url",
#                                             "image_url": {
#                                             "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
#                                             }
#                                         }
#                                     ]
#                     }
#                 ],
#                 stream=True
#             )
#             print("async response gemini pro vision")
#             print(resp)
#             for chunk in resp:
#                 print(chunk)
#         asyncio.run(test())
#     except Exception as e:
#         import traceback
#         traceback.print_exc()
#         raise e
# test_gemini_pro_vision_async()