File size: 30,321 Bytes
7db0ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
import os, types
import json
from enum import Enum
import requests
import time
from typing import Callable, Optional
from litellm.utils import ModelResponse, Usage, CustomStreamWrapper
import litellm, uuid
import httpx


class VertexAIError(Exception):
    def __init__(self, status_code, message):
        self.status_code = status_code
        self.message = message
        self.request = httpx.Request(
            method="POST", url=" https://cloud.google.com/vertex-ai/"
        )
        self.response = httpx.Response(status_code=status_code, request=self.request)
        super().__init__(
            self.message
        )  # Call the base class constructor with the parameters it needs


class VertexAIConfig:
    """
    Reference: https://cloud.google.com/vertex-ai/docs/generative-ai/chat/test-chat-prompts

    The class `VertexAIConfig` provides configuration for the VertexAI's API interface. Below are the parameters:

    - `temperature` (float): This controls the degree of randomness in token selection.

    - `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.

    - `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.

    - `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.

    Note: Please make sure to modify the default parameters as required for your use case.
    """

    temperature: Optional[float] = None
    max_output_tokens: Optional[int] = None
    top_p: Optional[float] = None
    top_k: Optional[int] = None

    def __init__(
        self,
        temperature: Optional[float] = None,
        max_output_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        top_k: Optional[int] = None,
    ) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @classmethod
    def get_config(cls):
        return {
            k: v
            for k, v in cls.__dict__.items()
            if not k.startswith("__")
            and not isinstance(
                v,
                (
                    types.FunctionType,
                    types.BuiltinFunctionType,
                    classmethod,
                    staticmethod,
                ),
            )
            and v is not None
        }


def _get_image_bytes_from_url(image_url: str) -> bytes:
    try:
        response = requests.get(image_url)
        response.raise_for_status()  # Raise an error for bad responses (4xx and 5xx)
        image_bytes = response.content
        return image_bytes
    except requests.exceptions.RequestException as e:
        # Handle any request exceptions (e.g., connection error, timeout)
        return b""  # Return an empty bytes object or handle the error as needed


def _load_image_from_url(image_url: str):
    """
    Loads an image from a URL.

    Args:
        image_url (str): The URL of the image.

    Returns:
        Image: The loaded image.
    """
    from vertexai.preview.generative_models import (
        GenerativeModel,
        Part,
        GenerationConfig,
        Image,
    )

    image_bytes = _get_image_bytes_from_url(image_url)
    return Image.from_bytes(image_bytes)


def _gemini_vision_convert_messages(messages: list):
    """
    Converts given messages for GPT-4 Vision to Gemini format.

    Args:
        messages (list): The messages to convert. Each message can be a dictionary with a "content" key. The content can be a string or a list of elements. If it is a string, it will be concatenated to the prompt. If it is a list, each element will be processed based on its type:
            - If the element is a dictionary with a "type" key equal to "text", its "text" value will be concatenated to the prompt.
            - If the element is a dictionary with a "type" key equal to "image_url", its "image_url" value will be added to the list of images.

    Returns:
        tuple: A tuple containing the prompt (a string) and the processed images (a list of objects representing the images).

    Raises:
        VertexAIError: If the import of the 'vertexai' module fails, indicating that 'google-cloud-aiplatform' needs to be installed.
        Exception: If any other exception occurs during the execution of the function.

    Note:
        This function is based on the code from the 'gemini/getting-started/intro_gemini_python.ipynb' notebook in the 'generative-ai' repository on GitHub.
        The supported MIME types for images include 'image/png' and 'image/jpeg'.

    Examples:
        >>> messages = [
        ...     {"content": "Hello, world!"},
        ...     {"content": [{"type": "text", "text": "This is a text message."}, {"type": "image_url", "image_url": "example.com/image.png"}]},
        ... ]
        >>> _gemini_vision_convert_messages(messages)
        ('Hello, world!This is a text message.', [<Part object>, <Part object>])
    """
    try:
        import vertexai
    except:
        raise VertexAIError(
            status_code=400,
            message="vertexai import failed please run `pip install google-cloud-aiplatform`",
        )
    try:
        from vertexai.preview.language_models import (
            ChatModel,
            CodeChatModel,
            InputOutputTextPair,
        )
        from vertexai.language_models import TextGenerationModel, CodeGenerationModel
        from vertexai.preview.generative_models import (
            GenerativeModel,
            Part,
            GenerationConfig,
            Image,
        )

        # given messages for gpt-4 vision, convert them for gemini
        # https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_python.ipynb
        prompt = ""
        images = []
        for message in messages:
            if isinstance(message["content"], str):
                prompt += message["content"]
            elif isinstance(message["content"], list):
                # see https://docs.litellm.ai/docs/providers/openai#openai-vision-models
                for element in message["content"]:
                    if isinstance(element, dict):
                        if element["type"] == "text":
                            prompt += element["text"]
                        elif element["type"] == "image_url":
                            image_url = element["image_url"]["url"]
                            images.append(image_url)
        # processing images passed to gemini
        processed_images = []
        for img in images:
            if "gs://" in img:
                # Case 1: Images with Cloud Storage URIs
                # The supported MIME types for images include image/png and image/jpeg.
                part_mime = "image/png" if "png" in img else "image/jpeg"
                google_clooud_part = Part.from_uri(img, mime_type=part_mime)
                processed_images.append(google_clooud_part)
            elif "https:/" in img:
                # Case 2: Images with direct links
                image = _load_image_from_url(img)
                processed_images.append(image)
            elif ".mp4" in img and "gs://" in img:
                # Case 3: Videos with Cloud Storage URIs
                part_mime = "video/mp4"
                google_clooud_part = Part.from_uri(img, mime_type=part_mime)
                processed_images.append(google_clooud_part)
        return prompt, processed_images
    except Exception as e:
        raise e


def completion(
    model: str,
    messages: list,
    model_response: ModelResponse,
    print_verbose: Callable,
    encoding,
    logging_obj,
    vertex_project=None,
    vertex_location=None,
    optional_params=None,
    litellm_params=None,
    logger_fn=None,
    acompletion: bool = False,
):
    try:
        import vertexai
    except:
        raise VertexAIError(
            status_code=400,
            message="vertexai import failed please run `pip install google-cloud-aiplatform`",
        )
    try:
        from vertexai.preview.language_models import (
            ChatModel,
            CodeChatModel,
            InputOutputTextPair,
        )
        from vertexai.language_models import TextGenerationModel, CodeGenerationModel
        from vertexai.preview.generative_models import (
            GenerativeModel,
            Part,
            GenerationConfig,
        )
        from google.cloud.aiplatform_v1beta1.types import content as gapic_content_types

        vertexai.init(project=vertex_project, location=vertex_location)

        ## Load Config
        config = litellm.VertexAIConfig.get_config()
        for k, v in config.items():
            if k not in optional_params:
                optional_params[k] = v

        ## Process safety settings into format expected by vertex AI
        safety_settings = None
        if "safety_settings" in optional_params:
            safety_settings = optional_params.pop("safety_settings")
            if not isinstance(safety_settings, list):
                raise ValueError("safety_settings must be a list")
            if len(safety_settings) > 0 and not isinstance(safety_settings[0], dict):
                raise ValueError("safety_settings must be a list of dicts")
            safety_settings = [
                gapic_content_types.SafetySetting(x) for x in safety_settings
            ]

        # vertexai does not use an API key, it looks for credentials.json in the environment

        prompt = " ".join(
            [
                message["content"]
                for message in messages
                if isinstance(message["content"], str)
            ]
        )

        mode = ""

        request_str = ""
        response_obj = None
        if (
            model in litellm.vertex_language_models
            or model in litellm.vertex_vision_models
        ):
            llm_model = GenerativeModel(model)
            mode = "vision"
            request_str += f"llm_model = GenerativeModel({model})\n"
        elif model in litellm.vertex_chat_models:
            llm_model = ChatModel.from_pretrained(model)
            mode = "chat"
            request_str += f"llm_model = ChatModel.from_pretrained({model})\n"
        elif model in litellm.vertex_text_models:
            llm_model = TextGenerationModel.from_pretrained(model)
            mode = "text"
            request_str += f"llm_model = TextGenerationModel.from_pretrained({model})\n"
        elif model in litellm.vertex_code_text_models:
            llm_model = CodeGenerationModel.from_pretrained(model)
            mode = "text"
            request_str += f"llm_model = CodeGenerationModel.from_pretrained({model})\n"
        else:  # vertex_code_llm_models
            llm_model = CodeChatModel.from_pretrained(model)
            mode = "chat"
            request_str += f"llm_model = CodeChatModel.from_pretrained({model})\n"

        if acompletion == True:  # [TODO] expand support to vertex ai chat + text models
            if optional_params.get("stream", False) is True:
                # async streaming
                return async_streaming(
                    llm_model=llm_model,
                    mode=mode,
                    prompt=prompt,
                    logging_obj=logging_obj,
                    request_str=request_str,
                    model=model,
                    model_response=model_response,
                    messages=messages,
                    print_verbose=print_verbose,
                    **optional_params,
                )
            return async_completion(
                llm_model=llm_model,
                mode=mode,
                prompt=prompt,
                logging_obj=logging_obj,
                request_str=request_str,
                model=model,
                model_response=model_response,
                encoding=encoding,
                messages=messages,
                print_verbose=print_verbose,
                **optional_params,
            )

        if mode == "vision":
            print_verbose("\nMaking VertexAI Gemini Pro Vision Call")
            print_verbose(f"\nProcessing input messages = {messages}")
            tools = optional_params.pop("tools", None)
            prompt, images = _gemini_vision_convert_messages(messages=messages)
            content = [prompt] + images
            if "stream" in optional_params and optional_params["stream"] == True:
                stream = optional_params.pop("stream")
                request_str += f"response = llm_model.generate_content({content}, generation_config=GenerationConfig(**{optional_params}), safety_settings={safety_settings}, stream={stream})\n"
                logging_obj.pre_call(
                    input=prompt,
                    api_key=None,
                    additional_args={
                        "complete_input_dict": optional_params,
                        "request_str": request_str,
                    },
                )

                model_response = llm_model.generate_content(
                    contents=content,
                    generation_config=GenerationConfig(**optional_params),
                    safety_settings=safety_settings,
                    stream=True,
                    tools=tools,
                )
                optional_params["stream"] = True
                return model_response

            request_str += f"response = llm_model.generate_content({content})\n"
            ## LOGGING
            logging_obj.pre_call(
                input=prompt,
                api_key=None,
                additional_args={
                    "complete_input_dict": optional_params,
                    "request_str": request_str,
                },
            )

            ## LLM Call
            response = llm_model.generate_content(
                contents=content,
                generation_config=GenerationConfig(**optional_params),
                safety_settings=safety_settings,
                tools=tools,
            )

            if tools is not None and hasattr(
                response.candidates[0].content.parts[0], "function_call"
            ):
                function_call = response.candidates[0].content.parts[0].function_call
                args_dict = {}
                for k, v in function_call.args.items():
                    args_dict[k] = v
                args_str = json.dumps(args_dict)
                message = litellm.Message(
                    content=None,
                    tool_calls=[
                        {
                            "id": f"call_{str(uuid.uuid4())}",
                            "function": {
                                "arguments": args_str,
                                "name": function_call.name,
                            },
                            "type": "function",
                        }
                    ],
                )
                completion_response = message
            else:
                completion_response = response.text
            response_obj = response._raw_response
            optional_params["tools"] = tools
        elif mode == "chat":
            chat = llm_model.start_chat()
            request_str += f"chat = llm_model.start_chat()\n"

            if "stream" in optional_params and optional_params["stream"] == True:
                # NOTE: VertexAI does not accept stream=True as a param and raises an error,
                # we handle this by removing 'stream' from optional params and sending the request
                # after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
                optional_params.pop(
                    "stream", None
                )  # vertex ai raises an error when passing stream in optional params
                request_str += (
                    f"chat.send_message_streaming({prompt}, **{optional_params})\n"
                )
                ## LOGGING
                logging_obj.pre_call(
                    input=prompt,
                    api_key=None,
                    additional_args={
                        "complete_input_dict": optional_params,
                        "request_str": request_str,
                    },
                )
                model_response = chat.send_message_streaming(prompt, **optional_params)
                optional_params["stream"] = True
                return model_response

            request_str += f"chat.send_message({prompt}, **{optional_params}).text\n"
            ## LOGGING
            logging_obj.pre_call(
                input=prompt,
                api_key=None,
                additional_args={
                    "complete_input_dict": optional_params,
                    "request_str": request_str,
                },
            )
            completion_response = chat.send_message(prompt, **optional_params).text
        elif mode == "text":
            if "stream" in optional_params and optional_params["stream"] == True:
                optional_params.pop(
                    "stream", None
                )  # See note above on handling streaming for vertex ai
                request_str += (
                    f"llm_model.predict_streaming({prompt}, **{optional_params})\n"
                )
                ## LOGGING
                logging_obj.pre_call(
                    input=prompt,
                    api_key=None,
                    additional_args={
                        "complete_input_dict": optional_params,
                        "request_str": request_str,
                    },
                )
                model_response = llm_model.predict_streaming(prompt, **optional_params)
                optional_params["stream"] = True
                return model_response

            request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
            ## LOGGING
            logging_obj.pre_call(
                input=prompt,
                api_key=None,
                additional_args={
                    "complete_input_dict": optional_params,
                    "request_str": request_str,
                },
            )
            completion_response = llm_model.predict(prompt, **optional_params).text

        ## LOGGING
        logging_obj.post_call(
            input=prompt, api_key=None, original_response=completion_response
        )

        ## RESPONSE OBJECT
        if isinstance(completion_response, litellm.Message):
            model_response["choices"][0]["message"] = completion_response
        elif len(str(completion_response)) > 0:
            model_response["choices"][0]["message"]["content"] = str(
                completion_response
            )
        model_response["choices"][0]["message"]["content"] = str(completion_response)
        model_response["created"] = int(time.time())
        model_response["model"] = model
        ## CALCULATING USAGE
        if model in litellm.vertex_language_models and response_obj is not None:
            model_response["choices"][0].finish_reason = response_obj.candidates[
                0
            ].finish_reason.name
            usage = Usage(
                prompt_tokens=response_obj.usage_metadata.prompt_token_count,
                completion_tokens=response_obj.usage_metadata.candidates_token_count,
                total_tokens=response_obj.usage_metadata.total_token_count,
            )
        else:
            # init prompt tokens
            # this block attempts to get usage from response_obj if it exists, if not it uses the litellm token counter
            prompt_tokens, completion_tokens, total_tokens = 0, 0, 0
            if response_obj is not None:
                if hasattr(response_obj, "usage_metadata") and hasattr(
                    response_obj.usage_metadata, "prompt_token_count"
                ):
                    prompt_tokens = response_obj.usage_metadata.prompt_token_count
                    completion_tokens = (
                        response_obj.usage_metadata.candidates_token_count
                    )
            else:
                prompt_tokens = len(encoding.encode(prompt))
                completion_tokens = len(
                    encoding.encode(
                        model_response["choices"][0]["message"].get("content", "")
                    )
                )

            usage = Usage(
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
            )
        model_response.usage = usage
        return model_response
    except Exception as e:
        raise VertexAIError(status_code=500, message=str(e))


async def async_completion(
    llm_model,
    mode: str,
    prompt: str,
    model: str,
    model_response: ModelResponse,
    logging_obj=None,
    request_str=None,
    encoding=None,
    messages=None,
    print_verbose=None,
    **optional_params,
):
    """
    Add support for acompletion calls for gemini-pro
    """
    try:
        from vertexai.preview.generative_models import GenerationConfig

        if mode == "vision":
            print_verbose("\nMaking VertexAI Gemini Pro Vision Call")
            print_verbose(f"\nProcessing input messages = {messages}")
            tools = optional_params.pop("tools", None)

            prompt, images = _gemini_vision_convert_messages(messages=messages)
            content = [prompt] + images

            request_str += f"response = llm_model.generate_content({content})\n"
            ## LOGGING
            logging_obj.pre_call(
                input=prompt,
                api_key=None,
                additional_args={
                    "complete_input_dict": optional_params,
                    "request_str": request_str,
                },
            )

            ## LLM Call
            response = await llm_model._generate_content_async(
                contents=content,
                generation_config=GenerationConfig(**optional_params),
                tools=tools,
            )

            if tools is not None and hasattr(
                response.candidates[0].content.parts[0], "function_call"
            ):
                function_call = response.candidates[0].content.parts[0].function_call
                args_dict = {}
                for k, v in function_call.args.items():
                    args_dict[k] = v
                args_str = json.dumps(args_dict)
                message = litellm.Message(
                    content=None,
                    tool_calls=[
                        {
                            "id": f"call_{str(uuid.uuid4())}",
                            "function": {
                                "arguments": args_str,
                                "name": function_call.name,
                            },
                            "type": "function",
                        }
                    ],
                )
                completion_response = message
            else:
                completion_response = response.text
            response_obj = response._raw_response
            optional_params["tools"] = tools
        elif mode == "chat":
            # chat-bison etc.
            chat = llm_model.start_chat()
            ## LOGGING
            logging_obj.pre_call(
                input=prompt,
                api_key=None,
                additional_args={
                    "complete_input_dict": optional_params,
                    "request_str": request_str,
                },
            )
            response_obj = await chat.send_message_async(prompt, **optional_params)
            completion_response = response_obj.text
        elif mode == "text":
            # gecko etc.
            request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
            ## LOGGING
            logging_obj.pre_call(
                input=prompt,
                api_key=None,
                additional_args={
                    "complete_input_dict": optional_params,
                    "request_str": request_str,
                },
            )
            response_obj = await llm_model.predict_async(prompt, **optional_params)
            completion_response = response_obj.text

        ## LOGGING
        logging_obj.post_call(
            input=prompt, api_key=None, original_response=completion_response
        )

        ## RESPONSE OBJECT
        if isinstance(completion_response, litellm.Message):
            model_response["choices"][0]["message"] = completion_response
        elif len(str(completion_response)) > 0:
            model_response["choices"][0]["message"]["content"] = str(
                completion_response
            )
        model_response["choices"][0]["message"]["content"] = str(completion_response)
        model_response["created"] = int(time.time())
        model_response["model"] = model
        ## CALCULATING USAGE
        if model in litellm.vertex_language_models and response_obj is not None:
            model_response["choices"][0].finish_reason = response_obj.candidates[
                0
            ].finish_reason.name
            usage = Usage(
                prompt_tokens=response_obj.usage_metadata.prompt_token_count,
                completion_tokens=response_obj.usage_metadata.candidates_token_count,
                total_tokens=response_obj.usage_metadata.total_token_count,
            )
        else:
            # init prompt tokens
            # this block attempts to get usage from response_obj if it exists, if not it uses the litellm token counter
            prompt_tokens, completion_tokens, total_tokens = 0, 0, 0
            if response_obj is not None:
                if hasattr(response_obj, "usage_metadata") and hasattr(
                    response_obj.usage_metadata, "prompt_token_count"
                ):
                    prompt_tokens = response_obj.usage_metadata.prompt_token_count
                    completion_tokens = (
                        response_obj.usage_metadata.candidates_token_count
                    )
            else:
                prompt_tokens = len(encoding.encode(prompt))
                completion_tokens = len(
                    encoding.encode(
                        model_response["choices"][0]["message"].get("content", "")
                    )
                )

            # set usage
            usage = Usage(
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
            )
        model_response.usage = usage
        return model_response
    except Exception as e:
        raise VertexAIError(status_code=500, message=str(e))


async def async_streaming(
    llm_model,
    mode: str,
    prompt: str,
    model: str,
    model_response: ModelResponse,
    logging_obj=None,
    request_str=None,
    messages=None,
    print_verbose=None,
    **optional_params,
):
    """
    Add support for async streaming calls for gemini-pro
    """
    from vertexai.preview.generative_models import GenerationConfig

    if mode == "vision":
        stream = optional_params.pop("stream")
        tools = optional_params.pop("tools", None)
        print_verbose("\nMaking VertexAI Gemini Pro Vision Call")
        print_verbose(f"\nProcessing input messages = {messages}")

        prompt, images = _gemini_vision_convert_messages(messages=messages)
        content = [prompt] + images
        request_str += f"response = llm_model.generate_content({content}, generation_config=GenerationConfig(**{optional_params}), stream={stream})\n"
        logging_obj.pre_call(
            input=prompt,
            api_key=None,
            additional_args={
                "complete_input_dict": optional_params,
                "request_str": request_str,
            },
        )

        response = await llm_model._generate_content_streaming_async(
            contents=content,
            generation_config=GenerationConfig(**optional_params),
            tools=tools,
        )
        optional_params["stream"] = True
        optional_params["tools"] = tools
    elif mode == "chat":
        chat = llm_model.start_chat()
        optional_params.pop(
            "stream", None
        )  # vertex ai raises an error when passing stream in optional params
        request_str += (
            f"chat.send_message_streaming_async({prompt}, **{optional_params})\n"
        )
        ## LOGGING
        logging_obj.pre_call(
            input=prompt,
            api_key=None,
            additional_args={
                "complete_input_dict": optional_params,
                "request_str": request_str,
            },
        )
        response = chat.send_message_streaming_async(prompt, **optional_params)
        optional_params["stream"] = True
    elif mode == "text":
        optional_params.pop(
            "stream", None
        )  # See note above on handling streaming for vertex ai
        request_str += (
            f"llm_model.predict_streaming_async({prompt}, **{optional_params})\n"
        )
        ## LOGGING
        logging_obj.pre_call(
            input=prompt,
            api_key=None,
            additional_args={
                "complete_input_dict": optional_params,
                "request_str": request_str,
            },
        )
        response = llm_model.predict_streaming_async(prompt, **optional_params)

    streamwrapper = CustomStreamWrapper(
        completion_stream=response,
        model=model,
        custom_llm_provider="vertex_ai",
        logging_obj=logging_obj,
    )
    async for transformed_chunk in streamwrapper:
        yield transformed_chunk


def embedding():
    # logic for parsing in - calling - parsing out model embedding calls
    pass