Spaces:
Sleeping
Sleeping
# #### What this tests #### | |
# # This tests the LiteLLM Class | |
# import sys, os | |
# import traceback | |
# import pytest | |
# sys.path.insert( | |
# 0, os.path.abspath("../..") | |
# ) # Adds the parent directory to the system path | |
# import litellm | |
# import asyncio | |
# litellm.set_verbose = True | |
# from litellm import Router | |
# import instructor | |
# from pydantic import BaseModel | |
# # This enables response_model keyword | |
# # # from client.chat.completions.create | |
# # client = instructor.patch(Router(model_list=[{ | |
# # "model_name": "gpt-3.5-turbo", # openai model name | |
# # "litellm_params": { # params for litellm completion/embedding call | |
# # "model": "azure/chatgpt-v-2", | |
# # "api_key": os.getenv("AZURE_API_KEY"), | |
# # "api_version": os.getenv("AZURE_API_VERSION"), | |
# # "api_base": os.getenv("AZURE_API_BASE") | |
# # } | |
# # }])) | |
# # class UserDetail(BaseModel): | |
# # name: str | |
# # age: int | |
# # user = client.chat.completions.create( | |
# # model="gpt-3.5-turbo", | |
# # response_model=UserDetail, | |
# # messages=[ | |
# # {"role": "user", "content": "Extract Jason is 25 years old"}, | |
# # ] | |
# # ) | |
# # assert isinstance(model, UserExtract) | |
# # assert isinstance(user, UserDetail) | |
# # assert user.name == "Jason" | |
# # assert user.age == 25 | |
# # print(f"user: {user}") | |
# import instructor | |
# from openai import AsyncOpenAI | |
# aclient = instructor.apatch(Router(model_list=[{ | |
# "model_name": "gpt-3.5-turbo", # openai model name | |
# "litellm_params": { # params for litellm completion/embedding call | |
# "model": "azure/chatgpt-v-2", | |
# "api_key": os.getenv("AZURE_API_KEY"), | |
# "api_version": os.getenv("AZURE_API_VERSION"), | |
# "api_base": os.getenv("AZURE_API_BASE") | |
# } | |
# }], default_litellm_params={"acompletion": True})) | |
# class UserExtract(BaseModel): | |
# name: str | |
# age: int | |
# async def main(): | |
# model = await aclient.chat.completions.create( | |
# model="gpt-3.5-turbo", | |
# response_model=UserExtract, | |
# messages=[ | |
# {"role": "user", "content": "Extract jason is 25 years old"}, | |
# ], | |
# ) | |
# print(f"model: {model}") | |
# asyncio.run(main()) | |