litellmlope / litellm /caching.py
ka1kuk's picture
Upload 235 files
7db0ae4 verified
raw
history blame
27 kB
# +-----------------------------------------------+
# | |
# | Give Feedback / Get Help |
# | https://github.com/BerriAI/litellm/issues/new |
# | |
# +-----------------------------------------------+
#
# Thank you users! We ❤️ you! - Krrish & Ishaan
import litellm
import time, logging
import json, traceback, ast, hashlib
from typing import Optional, Literal, List, Union, Any
from openai._models import BaseModel as OpenAIObject
def print_verbose(print_statement):
try:
if litellm.set_verbose:
print(print_statement) # noqa
except:
pass
class BaseCache:
def set_cache(self, key, value, **kwargs):
raise NotImplementedError
def get_cache(self, key, **kwargs):
raise NotImplementedError
class InMemoryCache(BaseCache):
def __init__(self):
# if users don't provider one, use the default litellm cache
self.cache_dict = {}
self.ttl_dict = {}
def set_cache(self, key, value, **kwargs):
self.cache_dict[key] = value
if "ttl" in kwargs:
self.ttl_dict[key] = time.time() + kwargs["ttl"]
def get_cache(self, key, **kwargs):
if key in self.cache_dict:
if key in self.ttl_dict:
if time.time() > self.ttl_dict[key]:
self.cache_dict.pop(key, None)
return None
original_cached_response = self.cache_dict[key]
try:
cached_response = json.loads(original_cached_response)
except:
cached_response = original_cached_response
return cached_response
return None
def flush_cache(self):
self.cache_dict.clear()
self.ttl_dict.clear()
class RedisCache(BaseCache):
def __init__(self, host=None, port=None, password=None, **kwargs):
import redis
# if users don't provider one, use the default litellm cache
from ._redis import get_redis_client
redis_kwargs = {}
if host is not None:
redis_kwargs["host"] = host
if port is not None:
redis_kwargs["port"] = port
if password is not None:
redis_kwargs["password"] = password
redis_kwargs.update(kwargs)
self.redis_client = get_redis_client(**redis_kwargs)
def set_cache(self, key, value, **kwargs):
ttl = kwargs.get("ttl", None)
print_verbose(f"Set Redis Cache: key: {key}\nValue {value}")
try:
self.redis_client.set(name=key, value=str(value), ex=ttl)
except Exception as e:
# NON blocking - notify users Redis is throwing an exception
logging.debug("LiteLLM Caching: set() - Got exception from REDIS : ", e)
def get_cache(self, key, **kwargs):
try:
print_verbose(f"Get Redis Cache: key: {key}")
cached_response = self.redis_client.get(key)
print_verbose(
f"Got Redis Cache: key: {key}, cached_response {cached_response}"
)
if cached_response != None:
# cached_response is in `b{} convert it to ModelResponse
cached_response = cached_response.decode(
"utf-8"
) # Convert bytes to string
try:
cached_response = json.loads(
cached_response
) # Convert string to dictionary
except:
cached_response = ast.literal_eval(cached_response)
return cached_response
except Exception as e:
# NON blocking - notify users Redis is throwing an exception
traceback.print_exc()
logging.debug("LiteLLM Caching: get() - Got exception from REDIS: ", e)
def flush_cache(self):
self.redis_client.flushall()
class S3Cache(BaseCache):
def __init__(
self,
s3_bucket_name,
s3_region_name=None,
s3_api_version=None,
s3_use_ssl=True,
s3_verify=None,
s3_endpoint_url=None,
s3_aws_access_key_id=None,
s3_aws_secret_access_key=None,
s3_aws_session_token=None,
s3_config=None,
**kwargs,
):
import boto3
self.bucket_name = s3_bucket_name
# Create an S3 client with custom endpoint URL
self.s3_client = boto3.client(
"s3",
region_name=s3_region_name,
endpoint_url=s3_endpoint_url,
api_version=s3_api_version,
use_ssl=s3_use_ssl,
verify=s3_verify,
aws_access_key_id=s3_aws_access_key_id,
aws_secret_access_key=s3_aws_secret_access_key,
aws_session_token=s3_aws_session_token,
config=s3_config,
**kwargs,
)
def set_cache(self, key, value, **kwargs):
try:
print_verbose(f"LiteLLM SET Cache - S3. Key={key}. Value={value}")
ttl = kwargs.get("ttl", None)
# Convert value to JSON before storing in S3
serialized_value = json.dumps(value)
if ttl is not None:
cache_control = f"immutable, max-age={ttl}, s-maxage={ttl}"
import datetime
# Calculate expiration time
expiration_time = datetime.datetime.now() + ttl
# Upload the data to S3 with the calculated expiration time
self.s3_client.put_object(
Bucket=self.bucket_name,
Key=key,
Body=serialized_value,
Expires=expiration_time,
CacheControl=cache_control,
ContentType="application/json",
ContentLanguage="en",
ContentDisposition=f"inline; filename=\"{key}.json\""
)
else:
cache_control = "immutable, max-age=31536000, s-maxage=31536000"
# Upload the data to S3 without specifying Expires
self.s3_client.put_object(
Bucket=self.bucket_name,
Key=key,
Body=serialized_value,
CacheControl=cache_control,
ContentType="application/json",
ContentLanguage="en",
ContentDisposition=f"inline; filename=\"{key}.json\""
)
except Exception as e:
# NON blocking - notify users S3 is throwing an exception
print_verbose(f"S3 Caching: set_cache() - Got exception from S3: {e}")
def get_cache(self, key, **kwargs):
import boto3, botocore
try:
print_verbose(f"Get S3 Cache: key: {key}")
# Download the data from S3
cached_response = self.s3_client.get_object(
Bucket=self.bucket_name, Key=key
)
if cached_response != None:
# cached_response is in `b{} convert it to ModelResponse
cached_response = (
cached_response["Body"].read().decode("utf-8")
) # Convert bytes to string
try:
cached_response = json.loads(
cached_response
) # Convert string to dictionary
except Exception as e:
cached_response = ast.literal_eval(cached_response)
if type(cached_response) is not dict:
cached_response = dict(cached_response)
print_verbose(
f"Got S3 Cache: key: {key}, cached_response {cached_response}. Type Response {type(cached_response)}"
)
return cached_response
except botocore.exceptions.ClientError as e:
if e.response["Error"]["Code"] == "NoSuchKey":
print_verbose(
f"S3 Cache: The specified key '{key}' does not exist in the S3 bucket."
)
return None
except Exception as e:
# NON blocking - notify users S3 is throwing an exception
traceback.print_exc()
print_verbose(f"S3 Caching: get_cache() - Got exception from S3: {e}")
def flush_cache(self):
pass
class DualCache(BaseCache):
"""
This updates both Redis and an in-memory cache simultaneously.
When data is updated or inserted, it is written to both the in-memory cache + Redis.
This ensures that even if Redis hasn't been updated yet, the in-memory cache reflects the most recent data.
"""
def __init__(
self,
in_memory_cache: Optional[InMemoryCache] = None,
redis_cache: Optional[RedisCache] = None,
) -> None:
super().__init__()
# If in_memory_cache is not provided, use the default InMemoryCache
self.in_memory_cache = in_memory_cache or InMemoryCache()
# If redis_cache is not provided, use the default RedisCache
self.redis_cache = redis_cache
def set_cache(self, key, value, local_only: bool = False, **kwargs):
# Update both Redis and in-memory cache
try:
print_verbose(f"set cache: key: {key}; value: {value}")
if self.in_memory_cache is not None:
self.in_memory_cache.set_cache(key, value, **kwargs)
if self.redis_cache is not None and local_only == False:
self.redis_cache.set_cache(key, value, **kwargs)
except Exception as e:
print_verbose(e)
def get_cache(self, key, local_only: bool = False, **kwargs):
# Try to fetch from in-memory cache first
try:
print_verbose(f"get cache: cache key: {key}; local_only: {local_only}")
result = None
if self.in_memory_cache is not None:
in_memory_result = self.in_memory_cache.get_cache(key, **kwargs)
print_verbose(f"in_memory_result: {in_memory_result}")
if in_memory_result is not None:
result = in_memory_result
if result is None and self.redis_cache is not None and local_only == False:
# If not found in in-memory cache, try fetching from Redis
redis_result = self.redis_cache.get_cache(key, **kwargs)
if redis_result is not None:
# Update in-memory cache with the value from Redis
self.in_memory_cache.set_cache(key, redis_result, **kwargs)
result = redis_result
print_verbose(f"get cache: cache result: {result}")
return result
except Exception as e:
traceback.print_exc()
def flush_cache(self):
if self.in_memory_cache is not None:
self.in_memory_cache.flush_cache()
if self.redis_cache is not None:
self.redis_cache.flush_cache()
#### LiteLLM.Completion / Embedding Cache ####
class Cache:
def __init__(
self,
type: Optional[Literal["local", "redis", "s3"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"],
# s3 Bucket, boto3 configuration
s3_bucket_name: Optional[str] = None,
s3_region_name: Optional[str] = None,
s3_api_version: Optional[str] = None,
s3_use_ssl: Optional[bool] = True,
s3_verify: Optional[Union[bool, str]] = None,
s3_endpoint_url: Optional[str] = None,
s3_aws_access_key_id: Optional[str] = None,
s3_aws_secret_access_key: Optional[str] = None,
s3_aws_session_token: Optional[str] = None,
s3_config: Optional[Any] = None,
**kwargs,
):
"""
Initializes the cache based on the given type.
Args:
type (str, optional): The type of cache to initialize. Can be "local" or "redis". Defaults to "local".
host (str, optional): The host address for the Redis cache. Required if type is "redis".
port (int, optional): The port number for the Redis cache. Required if type is "redis".
password (str, optional): The password for the Redis cache. Required if type is "redis".
supported_call_types (list, optional): List of call types to cache for. Defaults to cache == on for all call types.
**kwargs: Additional keyword arguments for redis.Redis() cache
Raises:
ValueError: If an invalid cache type is provided.
Returns:
None. Cache is set as a litellm param
"""
if type == "redis":
self.cache: BaseCache = RedisCache(host, port, password, **kwargs)
if type == "local":
self.cache = InMemoryCache()
if type == "s3":
self.cache = S3Cache(
s3_bucket_name=s3_bucket_name,
s3_region_name=s3_region_name,
s3_api_version=s3_api_version,
s3_use_ssl=s3_use_ssl,
s3_verify=s3_verify,
s3_endpoint_url=s3_endpoint_url,
s3_aws_access_key_id=s3_aws_access_key_id,
s3_aws_secret_access_key=s3_aws_secret_access_key,
s3_aws_session_token=s3_aws_session_token,
s3_config=s3_config,
**kwargs,
)
if "cache" not in litellm.input_callback:
litellm.input_callback.append("cache")
if "cache" not in litellm.success_callback:
litellm.success_callback.append("cache")
if "cache" not in litellm._async_success_callback:
litellm._async_success_callback.append("cache")
self.supported_call_types = supported_call_types # default to ["completion", "acompletion", "embedding", "aembedding"]
self.type = type
def get_cache_key(self, *args, **kwargs):
"""
Get the cache key for the given arguments.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
str: The cache key generated from the arguments, or None if no cache key could be generated.
"""
cache_key = ""
print_verbose(f"\nGetting Cache key. Kwargs: {kwargs}")
# for streaming, we use preset_cache_key. It's created in wrapper(), we do this because optional params like max_tokens, get transformed for bedrock -> max_new_tokens
if kwargs.get("litellm_params", {}).get("preset_cache_key", None) is not None:
print_verbose(f"\nReturning preset cache key: {cache_key}")
return kwargs.get("litellm_params", {}).get("preset_cache_key", None)
# sort kwargs by keys, since model: [gpt-4, temperature: 0.2, max_tokens: 200] == [temperature: 0.2, max_tokens: 200, model: gpt-4]
completion_kwargs = [
"model",
"messages",
"temperature",
"top_p",
"n",
"stop",
"max_tokens",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"response_format",
"seed",
"tools",
"tool_choice",
]
embedding_only_kwargs = [
"input",
"encoding_format",
] # embedding kwargs = model, input, user, encoding_format. Model, user are checked in completion_kwargs
# combined_kwargs - NEEDS to be ordered across get_cache_key(). Do not use a set()
combined_kwargs = completion_kwargs + embedding_only_kwargs
for param in combined_kwargs:
# ignore litellm params here
if param in kwargs:
# check if param == model and model_group is passed in, then override model with model_group
if param == "model":
model_group = None
caching_group = None
metadata = kwargs.get("metadata", None)
litellm_params = kwargs.get("litellm_params", {})
if metadata is not None:
model_group = metadata.get("model_group")
model_group = metadata.get("model_group", None)
caching_groups = metadata.get("caching_groups", None)
if caching_groups:
for group in caching_groups:
if model_group in group:
caching_group = group
break
if litellm_params is not None:
metadata = litellm_params.get("metadata", None)
if metadata is not None:
model_group = metadata.get("model_group", None)
caching_groups = metadata.get("caching_groups", None)
if caching_groups:
for group in caching_groups:
if model_group in group:
caching_group = group
break
param_value = (
caching_group or model_group or kwargs[param]
) # use caching_group, if set then model_group if it exists, else use kwargs["model"]
else:
if kwargs[param] is None:
continue # ignore None params
param_value = kwargs[param]
cache_key += f"{str(param)}: {str(param_value)}"
print_verbose(f"\nCreated cache key: {cache_key}")
# Use hashlib to create a sha256 hash of the cache key
hash_object = hashlib.sha256(cache_key.encode())
# Hexadecimal representation of the hash
hash_hex = hash_object.hexdigest()
print_verbose(f"Hashed cache key (SHA-256): {hash_hex}")
return hash_hex
def generate_streaming_content(self, content):
chunk_size = 5 # Adjust the chunk size as needed
for i in range(0, len(content), chunk_size):
yield {
"choices": [
{
"delta": {
"role": "assistant",
"content": content[i : i + chunk_size],
}
}
]
}
time.sleep(0.02)
def get_cache(self, *args, **kwargs):
"""
Retrieves the cached result for the given arguments.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
The cached result if it exists, otherwise None.
"""
try: # never block execution
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
cache_key = self.get_cache_key(*args, **kwargs)
if cache_key is not None:
cache_control_args = kwargs.get("cache", {})
max_age = cache_control_args.get(
"s-max-age", cache_control_args.get("s-maxage", float("inf"))
)
cached_result = self.cache.get_cache(cache_key)
# Check if a timestamp was stored with the cached response
if (
cached_result is not None
and isinstance(cached_result, dict)
and "timestamp" in cached_result
and max_age is not None
):
timestamp = cached_result["timestamp"]
current_time = time.time()
# Calculate age of the cached response
response_age = current_time - timestamp
# Check if the cached response is older than the max-age
if response_age > max_age:
print_verbose(
f"Cached response for key {cache_key} is too old. Max-age: {max_age}s, Age: {response_age}s"
)
return None # Cached response is too old
# If the response is fresh, or there's no max-age requirement, return the cached response
# cached_response is in `b{} convert it to ModelResponse
cached_response = cached_result.get("response")
try:
if isinstance(cached_response, dict):
pass
else:
cached_response = json.loads(
cached_response
) # Convert string to dictionary
except:
cached_response = ast.literal_eval(cached_response)
return cached_response
return cached_result
except Exception as e:
print_verbose(f"An exception occurred: {traceback.format_exc()}")
return None
def add_cache(self, result, *args, **kwargs):
"""
Adds a result to the cache.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
None
"""
try:
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
cache_key = self.get_cache_key(*args, **kwargs)
if cache_key is not None:
if isinstance(result, OpenAIObject):
result = result.model_dump_json()
## Get Cache-Controls ##
if kwargs.get("cache", None) is not None and isinstance(
kwargs.get("cache"), dict
):
for k, v in kwargs.get("cache").items():
if k == "ttl":
kwargs["ttl"] = v
cached_data = {"timestamp": time.time(), "response": result}
self.cache.set_cache(cache_key, cached_data, **kwargs)
except Exception as e:
print_verbose(f"LiteLLM Cache: Excepton add_cache: {str(e)}")
traceback.print_exc()
pass
async def _async_add_cache(self, result, *args, **kwargs):
self.add_cache(result, *args, **kwargs)
def enable_cache(
type: Optional[Literal["local", "redis", "s3"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"],
**kwargs,
):
"""
Enable cache with the specified configuration.
Args:
type (Optional[Literal["local", "redis"]]): The type of cache to enable. Defaults to "local".
host (Optional[str]): The host address of the cache server. Defaults to None.
port (Optional[str]): The port number of the cache server. Defaults to None.
password (Optional[str]): The password for the cache server. Defaults to None.
supported_call_types (Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]]):
The supported call types for the cache. Defaults to ["completion", "acompletion", "embedding", "aembedding"].
**kwargs: Additional keyword arguments.
Returns:
None
Raises:
None
"""
print_verbose("LiteLLM: Enabling Cache")
if "cache" not in litellm.input_callback:
litellm.input_callback.append("cache")
if "cache" not in litellm.success_callback:
litellm.success_callback.append("cache")
if "cache" not in litellm._async_success_callback:
litellm._async_success_callback.append("cache")
if litellm.cache == None:
litellm.cache = Cache(
type=type,
host=host,
port=port,
password=password,
supported_call_types=supported_call_types,
**kwargs,
)
print_verbose(f"LiteLLM: Cache enabled, litellm.cache={litellm.cache}")
print_verbose(f"LiteLLM Cache: {vars(litellm.cache)}")
def update_cache(
type: Optional[Literal["local", "redis"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"],
**kwargs,
):
"""
Update the cache for LiteLLM.
Args:
type (Optional[Literal["local", "redis"]]): The type of cache. Defaults to "local".
host (Optional[str]): The host of the cache. Defaults to None.
port (Optional[str]): The port of the cache. Defaults to None.
password (Optional[str]): The password for the cache. Defaults to None.
supported_call_types (Optional[List[Literal["completion", "acompletion", "embedding", "aembedding"]]]):
The supported call types for the cache. Defaults to ["completion", "acompletion", "embedding", "aembedding"].
**kwargs: Additional keyword arguments for the cache.
Returns:
None
"""
print_verbose("LiteLLM: Updating Cache")
litellm.cache = Cache(
type=type,
host=host,
port=port,
password=password,
supported_call_types=supported_call_types,
**kwargs,
)
print_verbose(f"LiteLLM: Cache Updated, litellm.cache={litellm.cache}")
print_verbose(f"LiteLLM Cache: {vars(litellm.cache)}")
def disable_cache():
"""
Disable the cache used by LiteLLM.
This function disables the cache used by the LiteLLM module. It removes the cache-related callbacks from the input_callback, success_callback, and _async_success_callback lists. It also sets the litellm.cache attribute to None.
Parameters:
None
Returns:
None
"""
from contextlib import suppress
print_verbose("LiteLLM: Disabling Cache")
with suppress(ValueError):
litellm.input_callback.remove("cache")
litellm.success_callback.remove("cache")
litellm._async_success_callback.remove("cache")
litellm.cache = None
print_verbose(f"LiteLLM: Cache disabled, litellm.cache={litellm.cache}")