litellmlope / litellm /tests /test_class.py
ka1kuk's picture
Upload 235 files
7db0ae4 verified
raw
history blame
2.19 kB
# #### What this tests ####
# # This tests the LiteLLM Class
# import sys, os
# import traceback
# import pytest
# sys.path.insert(
# 0, os.path.abspath("../..")
# ) # Adds the parent directory to the system path
# import litellm
# import asyncio
# litellm.set_verbose = True
# from litellm import Router
# import instructor
# from pydantic import BaseModel
# # This enables response_model keyword
# # # from client.chat.completions.create
# # client = instructor.patch(Router(model_list=[{
# # "model_name": "gpt-3.5-turbo", # openai model name
# # "litellm_params": { # params for litellm completion/embedding call
# # "model": "azure/chatgpt-v-2",
# # "api_key": os.getenv("AZURE_API_KEY"),
# # "api_version": os.getenv("AZURE_API_VERSION"),
# # "api_base": os.getenv("AZURE_API_BASE")
# # }
# # }]))
# # class UserDetail(BaseModel):
# # name: str
# # age: int
# # user = client.chat.completions.create(
# # model="gpt-3.5-turbo",
# # response_model=UserDetail,
# # messages=[
# # {"role": "user", "content": "Extract Jason is 25 years old"},
# # ]
# # )
# # assert isinstance(model, UserExtract)
# # assert isinstance(user, UserDetail)
# # assert user.name == "Jason"
# # assert user.age == 25
# # print(f"user: {user}")
# import instructor
# from openai import AsyncOpenAI
# aclient = instructor.apatch(Router(model_list=[{
# "model_name": "gpt-3.5-turbo", # openai model name
# "litellm_params": { # params for litellm completion/embedding call
# "model": "azure/chatgpt-v-2",
# "api_key": os.getenv("AZURE_API_KEY"),
# "api_version": os.getenv("AZURE_API_VERSION"),
# "api_base": os.getenv("AZURE_API_BASE")
# }
# }], default_litellm_params={"acompletion": True}))
# class UserExtract(BaseModel):
# name: str
# age: int
# async def main():
# model = await aclient.chat.completions.create(
# model="gpt-3.5-turbo",
# response_model=UserExtract,
# messages=[
# {"role": "user", "content": "Extract jason is 25 years old"},
# ],
# )
# print(f"model: {model}")
# asyncio.run(main())