litellmlope / litellm /tests /test_custom_logger.py
ka1kuk's picture
Upload 235 files
7db0ae4 verified
raw
history blame
17.4 kB
### What this tests ####
import sys, os, time, inspect, asyncio, traceback
import pytest
sys.path.insert(0, os.path.abspath('../..'))
from litellm import completion, embedding
import litellm
from litellm.integrations.custom_logger import CustomLogger
class MyCustomHandler(CustomLogger):
complete_streaming_response_in_callback = ""
def __init__(self):
self.success: bool = False # type: ignore
self.failure: bool = False # type: ignore
self.async_success: bool = False # type: ignore
self.async_success_embedding: bool = False # type: ignore
self.async_failure: bool = False # type: ignore
self.async_failure_embedding: bool = False # type: ignore
self.async_completion_kwargs = None # type: ignore
self.async_embedding_kwargs = None # type: ignore
self.async_embedding_response = None # type: ignore
self.async_completion_kwargs_fail = None # type: ignore
self.async_embedding_kwargs_fail = None # type: ignore
self.stream_collected_response = None # type: ignore
self.sync_stream_collected_response = None # type: ignore
self.user = None # type: ignore
self.data_sent_to_api: dict = {}
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
self.data_sent_to_api = kwargs["additional_args"].get("complete_input_dict", {})
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(f"Post-API Call")
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
self.success = True
if kwargs.get("stream") == True:
self.sync_stream_collected_response = response_obj
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
self.failure = True
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async success")
print(f"received kwargs user: {kwargs['user']}")
self.async_success = True
if kwargs.get("model") == "text-embedding-ada-002":
self.async_success_embedding = True
self.async_embedding_kwargs = kwargs
self.async_embedding_response = response_obj
if kwargs.get("stream") == True:
self.stream_collected_response = response_obj
self.async_completion_kwargs = kwargs
self.user = kwargs.get("user", None)
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Failure")
self.async_failure = True
if kwargs.get("model") == "text-embedding-ada-002":
self.async_failure_embedding = True
self.async_embedding_kwargs_fail = kwargs
self.async_completion_kwargs_fail = kwargs
class TmpFunction:
complete_streaming_response_in_callback = ""
async_success: bool = False
async def async_test_logging_fn(self, kwargs, completion_obj, start_time, end_time):
print(f"ON ASYNC LOGGING")
self.async_success = True
print(f'kwargs.get("complete_streaming_response"): {kwargs.get("complete_streaming_response")}')
self.complete_streaming_response_in_callback = kwargs.get("complete_streaming_response")
def test_async_chat_openai_stream():
try:
tmp_function = TmpFunction()
# litellm.set_verbose = True
litellm.success_callback = [tmp_function.async_test_logging_fn]
complete_streaming_response = ""
async def call_gpt():
nonlocal complete_streaming_response
response = await litellm.acompletion(model="gpt-3.5-turbo",
messages=[{
"role": "user",
"content": "Hi 👋 - i'm openai"
}],
stream=True)
async for chunk in response:
complete_streaming_response += chunk["choices"][0]["delta"]["content"] or ""
print(complete_streaming_response)
asyncio.run(call_gpt())
complete_streaming_response = complete_streaming_response.strip("'")
response1 = tmp_function.complete_streaming_response_in_callback["choices"][0]["message"]["content"]
response2 = complete_streaming_response
# assert [ord(c) for c in response1] == [ord(c) for c in response2]
assert response1 == response2
assert tmp_function.async_success == True
except Exception as e:
print(e)
pytest.fail(f"An error occurred - {str(e)}")
# test_async_chat_openai_stream()
def test_completion_azure_stream_moderation_failure():
try:
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "how do i kill someone",
},
]
try:
response = completion(
model="azure/chatgpt-v-2", messages=messages, stream=True
)
for chunk in response:
print(f"chunk: {chunk}")
continue
except Exception as e:
print(e)
time.sleep(1)
assert customHandler.failure == True
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_async_custom_handler_stream():
try:
# [PROD Test] - Do not DELETE
# checks if the model response available in the async + stream callbacks is equal to the received response
customHandler2 = MyCustomHandler()
litellm.callbacks = [customHandler2]
litellm.set_verbose = False
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "write 1 sentence about litellm being amazing",
},
]
complete_streaming_response = ""
async def test_1():
nonlocal complete_streaming_response
response = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=messages,
stream=True
)
async for chunk in response:
complete_streaming_response += chunk["choices"][0]["delta"]["content"] or ""
print(complete_streaming_response)
asyncio.run(test_1())
response_in_success_handler = customHandler2.stream_collected_response
response_in_success_handler = response_in_success_handler["choices"][0]["message"]["content"]
print("\n\n")
print("response_in_success_handler: ", response_in_success_handler)
print("complete_streaming_response: ", complete_streaming_response)
assert response_in_success_handler == complete_streaming_response
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_async_custom_handler_stream()
def test_azure_completion_stream():
# [PROD Test] - Do not DELETE
# test if completion() + sync custom logger get the same complete stream response
try:
# checks if the model response available in the async + stream callbacks is equal to the received response
customHandler2 = MyCustomHandler()
litellm.callbacks = [customHandler2]
litellm.set_verbose = False
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "write 1 sentence about litellm being amazing",
},
]
complete_streaming_response = ""
response = litellm.completion(
model="azure/chatgpt-v-2",
messages=messages,
stream=True
)
for chunk in response:
complete_streaming_response += chunk["choices"][0]["delta"]["content"] or ""
print(complete_streaming_response)
time.sleep(0.5) # wait 1/2 second before checking callbacks
response_in_success_handler = customHandler2.sync_stream_collected_response
response_in_success_handler = response_in_success_handler["choices"][0]["message"]["content"]
print("\n\n")
print("response_in_success_handler: ", response_in_success_handler)
print("complete_streaming_response: ", complete_streaming_response)
assert response_in_success_handler == complete_streaming_response
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.asyncio
async def test_async_custom_handler_completion():
try:
customHandler_success = MyCustomHandler()
customHandler_failure = MyCustomHandler()
# success
assert customHandler_success.async_success == False
litellm.callbacks = [customHandler_success]
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{
"role": "user",
"content": "hello from litellm test",
}]
)
await asyncio.sleep(1)
assert customHandler_success.async_success == True, "async success is not set to True even after success"
assert customHandler_success.async_completion_kwargs.get("model") == "gpt-3.5-turbo"
# failure
litellm.callbacks = [customHandler_failure]
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "how do i kill someone",
},
]
assert customHandler_failure.async_failure == False
try:
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
api_key="my-bad-key",
)
except:
pass
assert customHandler_failure.async_failure == True, "async failure is not set to True even after failure"
assert customHandler_failure.async_completion_kwargs_fail.get("model") == "gpt-3.5-turbo"
assert len(str(customHandler_failure.async_completion_kwargs_fail.get("exception"))) > 10 # expect APIError("OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: test. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}"), 'traceback_exception': 'Traceback (most recent call last):\n File "/Users/ishaanjaffer/Github/litellm/litellm/llms/openai.py", line 269, in acompletion\n response = await openai_aclient.chat.completions.create(**data)\n File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/openai/resources/chat/completions.py", line 119
litellm.callbacks = []
print("Passed setting async failure")
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
# asyncio.run(test_async_custom_handler_completion())
@pytest.mark.asyncio
async def test_async_custom_handler_embedding():
try:
customHandler_embedding = MyCustomHandler()
litellm.callbacks = [customHandler_embedding]
# success
assert customHandler_embedding.async_success_embedding == False
response = await litellm.aembedding(
model="text-embedding-ada-002",
input = ["hello world"],
)
await asyncio.sleep(1)
assert customHandler_embedding.async_success_embedding == True, "async_success_embedding is not set to True even after success"
assert customHandler_embedding.async_embedding_kwargs.get("model") == "text-embedding-ada-002"
assert customHandler_embedding.async_embedding_response["usage"]["prompt_tokens"] ==2
print("Passed setting async success: Embedding")
# failure
assert customHandler_embedding.async_failure_embedding == False
try:
response = await litellm.aembedding(
model="text-embedding-ada-002",
input = ["hello world"],
api_key="my-bad-key",
)
except:
pass
assert customHandler_embedding.async_failure_embedding == True, "async failure embedding is not set to True even after failure"
assert customHandler_embedding.async_embedding_kwargs_fail.get("model") == "text-embedding-ada-002"
assert len(str(customHandler_embedding.async_embedding_kwargs_fail.get("exception"))) > 10 # exppect APIError("OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: test. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}"), 'traceback_exception': 'Traceback (most recent call last):\n File "/Users/ishaanjaffer/Github/litellm/litellm/llms/openai.py", line 269, in acompletion\n response = await openai_aclient.chat.completions.create(**data)\n File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/openai/resources/chat/completions.py", line 119
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
# asyncio.run(test_async_custom_handler_embedding())
@pytest.mark.asyncio
async def test_async_custom_handler_embedding_optional_param():
"""
Tests if the openai optional params for embedding - user + encoding_format,
are logged
"""
customHandler_optional_params = MyCustomHandler()
litellm.callbacks = [customHandler_optional_params]
response = await litellm.aembedding(
model="azure/azure-embedding-model",
input = ["hello world"],
user = "John"
)
await asyncio.sleep(1) # success callback is async
assert customHandler_optional_params.user == "John"
assert customHandler_optional_params.user == customHandler_optional_params.data_sent_to_api["user"]
# asyncio.run(test_async_custom_handler_embedding_optional_param())
@pytest.mark.asyncio
async def test_async_custom_handler_embedding_optional_param_bedrock():
"""
Tests if the openai optional params for embedding - user + encoding_format,
are logged
but makes sure these are not sent to the non-openai/azure endpoint (raises errors).
"""
litellm.drop_params = True
litellm.set_verbose = True
customHandler_optional_params = MyCustomHandler()
litellm.callbacks = [customHandler_optional_params]
response = await litellm.aembedding(
model="bedrock/amazon.titan-embed-text-v1",
input = ["hello world"],
user = "John"
)
await asyncio.sleep(1) # success callback is async
assert customHandler_optional_params.user == "John"
assert "user" not in customHandler_optional_params.data_sent_to_api
def test_redis_cache_completion_stream():
from litellm import Cache
# Important Test - This tests if we can add to streaming cache, when custom callbacks are set
import random
try:
print("\nrunning test_redis_cache_completion_stream")
litellm.set_verbose = True
random_number = random.randint(1, 100000) # add a random number to ensure it's always adding / reading from cache
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_number}"}]
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
print("test for caching, streaming + completion")
response1 = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=0.2, stream=True)
response_1_content = ""
for chunk in response1:
print(chunk)
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
time.sleep(0.1) # sleep for 0.1 seconds allow set cache to occur
response2 = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=0.2, stream=True)
response_2_content = ""
for chunk in response2:
print(chunk)
response_2_content += chunk.choices[0].delta.content or ""
print("\nresponse 1", response_1_content)
print("\nresponse 2", response_2_content)
assert response_1_content == response_2_content, f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
litellm.success_callback = []
litellm._async_success_callback = []
litellm.cache = None
except Exception as e:
print(e)
litellm.success_callback = []
raise e
# test_redis_cache_completion_stream()