litellmlope / litellm /llms /aleph_alpha.py
ka1kuk's picture
Upload 235 files
7db0ae4 verified
import os, types
import json
from enum import Enum
import requests
import time
from typing import Callable, Optional
import litellm
from litellm.utils import ModelResponse, Choices, Message, Usage
import httpx
class AlephAlphaError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://api.aleph-alpha.com/complete"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AlephAlphaConfig:
"""
Reference: https://docs.aleph-alpha.com/api/complete/
The `AlephAlphaConfig` class represents the configuration for the Aleph Alpha API. Here are the properties:
- `maximum_tokens` (integer, required): The maximum number of tokens to be generated by the completion. The sum of input tokens and maximum tokens may not exceed 2048.
- `minimum_tokens` (integer, optional; default value: 0): Generate at least this number of tokens before an end-of-text token is generated.
- `echo` (boolean, optional; default value: false): Whether to echo the prompt in the completion.
- `temperature` (number, nullable; default value: 0): Adjusts how creatively the model generates outputs. Use combinations of temperature, top_k, and top_p sensibly.
- `top_k` (integer, nullable; default value: 0): Introduces randomness into token generation by considering the top k most likely options.
- `top_p` (number, nullable; default value: 0): Adds randomness by considering the smallest set of tokens whose cumulative probability exceeds top_p.
- `presence_penalty`, `frequency_penalty`, `sequence_penalty` (number, nullable; default value: 0): Various penalties that can reduce repetition.
- `sequence_penalty_min_length` (integer; default value: 2): Minimum number of tokens to be considered as a sequence.
- `repetition_penalties_include_prompt`, `repetition_penalties_include_completion`, `use_multiplicative_presence_penalty`,`use_multiplicative_frequency_penalty`,`use_multiplicative_sequence_penalty` (boolean, nullable; default value: false): Various settings that adjust how the repetition penalties are applied.
- `penalty_bias` (string, nullable): Text used in addition to the penalized tokens for repetition penalties.
- `penalty_exceptions` (string[], nullable): Strings that may be generated without penalty.
- `penalty_exceptions_include_stop_sequences` (boolean, nullable; default value: true): Include all stop_sequences in penalty_exceptions.
- `best_of` (integer, nullable; default value: 1): The number of completions will be generated on the server side.
- `n` (integer, nullable; default value: 1): The number of completions to return.
- `logit_bias` (object, nullable): Adjust the logit scores before sampling.
- `log_probs` (integer, nullable): Number of top log probabilities for each token generated.
- `stop_sequences` (string[], nullable): List of strings that will stop generation if they're generated.
- `tokens` (boolean, nullable; default value: false): Flag indicating whether individual tokens of the completion should be returned or not.
- `raw_completion` (boolean; default value: false): if True, the raw completion of the model will be returned.
- `disable_optimizations` (boolean, nullable; default value: false): Disables any applied optimizations to both your prompt and completion.
- `completion_bias_inclusion`, `completion_bias_exclusion` (string[], default value: []): Set of strings to bias the generation of tokens.
- `completion_bias_inclusion_first_token_only`, `completion_bias_exclusion_first_token_only` (boolean; default value: false): Consider only the first token for the completion_bias_inclusion/exclusion.
- `contextual_control_threshold` (number, nullable): Control over how similar tokens are controlled.
- `control_log_additive` (boolean; default value: true): Method of applying control to attention scores.
"""
maximum_tokens: Optional[
int
] = litellm.max_tokens # aleph alpha requires max tokens
minimum_tokens: Optional[int] = None
echo: Optional[bool] = None
temperature: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[int] = None
presence_penalty: Optional[int] = None
frequency_penalty: Optional[int] = None
sequence_penalty: Optional[int] = None
sequence_penalty_min_length: Optional[int] = None
repetition_penalties_include_prompt: Optional[bool] = None
repetition_penalties_include_completion: Optional[bool] = None
use_multiplicative_presence_penalty: Optional[bool] = None
use_multiplicative_frequency_penalty: Optional[bool] = None
use_multiplicative_sequence_penalty: Optional[bool] = None
penalty_bias: Optional[str] = None
penalty_exceptions_include_stop_sequences: Optional[bool] = None
best_of: Optional[int] = None
n: Optional[int] = None
logit_bias: Optional[dict] = None
log_probs: Optional[int] = None
stop_sequences: Optional[list] = None
tokens: Optional[bool] = None
raw_completion: Optional[bool] = None
disable_optimizations: Optional[bool] = None
completion_bias_inclusion: Optional[list] = None
completion_bias_exclusion: Optional[list] = None
completion_bias_inclusion_first_token_only: Optional[bool] = None
completion_bias_exclusion_first_token_only: Optional[bool] = None
contextual_control_threshold: Optional[int] = None
control_log_additive: Optional[bool] = None
def __init__(
self,
maximum_tokens: Optional[int] = None,
minimum_tokens: Optional[int] = None,
echo: Optional[bool] = None,
temperature: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
presence_penalty: Optional[int] = None,
frequency_penalty: Optional[int] = None,
sequence_penalty: Optional[int] = None,
sequence_penalty_min_length: Optional[int] = None,
repetition_penalties_include_prompt: Optional[bool] = None,
repetition_penalties_include_completion: Optional[bool] = None,
use_multiplicative_presence_penalty: Optional[bool] = None,
use_multiplicative_frequency_penalty: Optional[bool] = None,
use_multiplicative_sequence_penalty: Optional[bool] = None,
penalty_bias: Optional[str] = None,
penalty_exceptions_include_stop_sequences: Optional[bool] = None,
best_of: Optional[int] = None,
n: Optional[int] = None,
logit_bias: Optional[dict] = None,
log_probs: Optional[int] = None,
stop_sequences: Optional[list] = None,
tokens: Optional[bool] = None,
raw_completion: Optional[bool] = None,
disable_optimizations: Optional[bool] = None,
completion_bias_inclusion: Optional[list] = None,
completion_bias_exclusion: Optional[list] = None,
completion_bias_inclusion_first_token_only: Optional[bool] = None,
completion_bias_exclusion_first_token_only: Optional[bool] = None,
contextual_control_threshold: Optional[int] = None,
control_log_additive: Optional[bool] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def validate_environment(api_key):
headers = {
"accept": "application/json",
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
def completion(
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
default_max_tokens_to_sample=None,
):
headers = validate_environment(api_key)
## Load Config
config = litellm.AlephAlphaConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > aleph_alpha_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
completion_url = api_base
model = model
prompt = ""
if "control" in model: # follow the ###Instruction / ###Response format
for idx, message in enumerate(messages):
if "role" in message:
if (
idx == 0
): # set first message as instruction (required), let later user messages be input
prompt += f"###Instruction: {message['content']}"
else:
if message["role"] == "system":
prompt += f"###Instruction: {message['content']}"
elif message["role"] == "user":
prompt += f"###Input: {message['content']}"
else:
prompt += f"###Response: {message['content']}"
else:
prompt += f"{message['content']}"
else:
prompt = " ".join(message["content"] for message in messages)
data = {
"model": model,
"prompt": prompt,
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = requests.post(
completion_url,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"] if "stream" in optional_params else False,
)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
if "error" in completion_response:
raise AlephAlphaError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
try:
choices_list = []
for idx, item in enumerate(completion_response["completions"]):
if len(item["completion"]) > 0:
message_obj = Message(content=item["completion"])
else:
message_obj = Message(content=None)
choice_obj = Choices(
finish_reason=item["finish_reason"],
index=idx + 1,
message=message_obj,
)
choices_list.append(choice_obj)
model_response["choices"] = choices_list
except:
raise AlephAlphaError(
message=json.dumps(completion_response),
status_code=response.status_code,
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"]["content"])
)
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass