Spaces:
Sleeping
Sleeping
import os, types | |
import json | |
from enum import Enum | |
import requests | |
import time | |
from typing import Callable, Optional | |
import litellm | |
import httpx | |
from litellm.utils import ModelResponse, Usage | |
from .prompt_templates.factory import prompt_factory, custom_prompt | |
class CloudflareError(Exception): | |
def __init__(self, status_code, message): | |
self.status_code = status_code | |
self.message = message | |
self.request = httpx.Request(method="POST", url="https://api.cloudflare.com") | |
self.response = httpx.Response(status_code=status_code, request=self.request) | |
super().__init__( | |
self.message | |
) # Call the base class constructor with the parameters it needs | |
class CloudflareConfig: | |
max_tokens: Optional[int] = None | |
stream: Optional[bool] = None | |
def __init__( | |
self, | |
max_tokens: Optional[int] = None, | |
stream: Optional[bool] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
def validate_environment(api_key): | |
if api_key is None: | |
raise ValueError( | |
"Missing CloudflareError API Key - A call is being made to cloudflare but no key is set either in the environment variables or via params" | |
) | |
headers = { | |
"accept": "application/json", | |
"content-type": "application/json", | |
"Authorization": "Bearer " + api_key, | |
} | |
return headers | |
def completion( | |
model: str, | |
messages: list, | |
api_base: str, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
api_key, | |
logging_obj, | |
custom_prompt_dict={}, | |
optional_params=None, | |
litellm_params=None, | |
logger_fn=None, | |
): | |
headers = validate_environment(api_key) | |
## Load Config | |
config = litellm.CloudflareConfig.get_config() | |
for k, v in config.items(): | |
if k not in optional_params: | |
optional_params[k] = v | |
print_verbose(f"CUSTOM PROMPT DICT: {custom_prompt_dict}; model: {model}") | |
if model in custom_prompt_dict: | |
# check if the model has a registered custom prompt | |
model_prompt_details = custom_prompt_dict[model] | |
prompt = custom_prompt( | |
role_dict=model_prompt_details.get("roles", {}), | |
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""), | |
final_prompt_value=model_prompt_details.get("final_prompt_value", ""), | |
bos_token=model_prompt_details.get("bos_token", ""), | |
eos_token=model_prompt_details.get("eos_token", ""), | |
messages=messages, | |
) | |
# cloudflare adds the model to the api base | |
api_base = api_base + model | |
data = { | |
"messages": messages, | |
**optional_params, | |
} | |
## LOGGING | |
logging_obj.pre_call( | |
input=messages, | |
api_key=api_key, | |
additional_args={ | |
"headers": headers, | |
"api_base": api_base, | |
"complete_input_dict": data, | |
}, | |
) | |
## COMPLETION CALL | |
if "stream" in optional_params and optional_params["stream"] == True: | |
response = requests.post( | |
api_base, | |
headers=headers, | |
data=json.dumps(data), | |
stream=optional_params["stream"], | |
) | |
return response.iter_lines() | |
else: | |
response = requests.post(api_base, headers=headers, data=json.dumps(data)) | |
## LOGGING | |
logging_obj.post_call( | |
input=messages, | |
api_key=api_key, | |
original_response=response.text, | |
additional_args={"complete_input_dict": data}, | |
) | |
print_verbose(f"raw model_response: {response.text}") | |
## RESPONSE OBJECT | |
if response.status_code != 200: | |
raise CloudflareError( | |
status_code=response.status_code, message=response.text | |
) | |
completion_response = response.json() | |
model_response["choices"][0]["message"]["content"] = completion_response[ | |
"result" | |
]["response"] | |
## CALCULATING USAGE | |
print_verbose( | |
f"CALCULATING CLOUDFLARE TOKEN USAGE. Model Response: {model_response}; model_response['choices'][0]['message'].get('content', ''): {model_response['choices'][0]['message'].get('content', None)}" | |
) | |
prompt_tokens = litellm.utils.get_token_count(messages=messages, model=model) | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
) | |
model_response["created"] = int(time.time()) | |
model_response["model"] = "cloudflare/" + model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
model_response.usage = usage | |
return model_response | |
def embedding(): | |
# logic for parsing in - calling - parsing out model embedding calls | |
pass | |