litellmlope / litellm /llms /cloudflare.py
ka1kuk's picture
Upload 235 files
7db0ae4 verified
import os, types
import json
from enum import Enum
import requests
import time
from typing import Callable, Optional
import litellm
import httpx
from litellm.utils import ModelResponse, Usage
from .prompt_templates.factory import prompt_factory, custom_prompt
class CloudflareError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="https://api.cloudflare.com")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class CloudflareConfig:
max_tokens: Optional[int] = None
stream: Optional[bool] = None
def __init__(
self,
max_tokens: Optional[int] = None,
stream: Optional[bool] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def validate_environment(api_key):
if api_key is None:
raise ValueError(
"Missing CloudflareError API Key - A call is being made to cloudflare but no key is set either in the environment variables or via params"
)
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": "Bearer " + api_key,
}
return headers
def completion(
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
custom_prompt_dict={},
optional_params=None,
litellm_params=None,
logger_fn=None,
):
headers = validate_environment(api_key)
## Load Config
config = litellm.CloudflareConfig.get_config()
for k, v in config.items():
if k not in optional_params:
optional_params[k] = v
print_verbose(f"CUSTOM PROMPT DICT: {custom_prompt_dict}; model: {model}")
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", {}),
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
bos_token=model_prompt_details.get("bos_token", ""),
eos_token=model_prompt_details.get("eos_token", ""),
messages=messages,
)
# cloudflare adds the model to the api base
api_base = api_base + model
data = {
"messages": messages,
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={
"headers": headers,
"api_base": api_base,
"complete_input_dict": data,
},
)
## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True:
response = requests.post(
api_base,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"],
)
return response.iter_lines()
else:
response = requests.post(api_base, headers=headers, data=json.dumps(data))
## LOGGING
logging_obj.post_call(
input=messages,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
if response.status_code != 200:
raise CloudflareError(
status_code=response.status_code, message=response.text
)
completion_response = response.json()
model_response["choices"][0]["message"]["content"] = completion_response[
"result"
]["response"]
## CALCULATING USAGE
print_verbose(
f"CALCULATING CLOUDFLARE TOKEN USAGE. Model Response: {model_response}; model_response['choices'][0]['message'].get('content', ''): {model_response['choices'][0]['message'].get('content', None)}"
)
prompt_tokens = litellm.utils.get_token_count(messages=messages, model=model)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response["created"] = int(time.time())
model_response["model"] = "cloudflare/" + model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass