import os, types import json from enum import Enum import requests import time from typing import Callable, Optional import litellm import httpx from litellm.utils import ModelResponse, Usage from .prompt_templates.factory import prompt_factory, custom_prompt class CloudflareError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request(method="POST", url="https://api.cloudflare.com") self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs class CloudflareConfig: max_tokens: Optional[int] = None stream: Optional[bool] = None def __init__( self, max_tokens: Optional[int] = None, stream: Optional[bool] = None, ) -> None: locals_ = locals() for key, value in locals_.items(): if key != "self" and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return { k: v for k, v in cls.__dict__.items() if not k.startswith("__") and not isinstance( v, ( types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod, ), ) and v is not None } def validate_environment(api_key): if api_key is None: raise ValueError( "Missing CloudflareError API Key - A call is being made to cloudflare but no key is set either in the environment variables or via params" ) headers = { "accept": "application/json", "content-type": "application/json", "Authorization": "Bearer " + api_key, } return headers def completion( model: str, messages: list, api_base: str, model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, custom_prompt_dict={}, optional_params=None, litellm_params=None, logger_fn=None, ): headers = validate_environment(api_key) ## Load Config config = litellm.CloudflareConfig.get_config() for k, v in config.items(): if k not in optional_params: optional_params[k] = v print_verbose(f"CUSTOM PROMPT DICT: {custom_prompt_dict}; model: {model}") if model in custom_prompt_dict: # check if the model has a registered custom prompt model_prompt_details = custom_prompt_dict[model] prompt = custom_prompt( role_dict=model_prompt_details.get("roles", {}), initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""), final_prompt_value=model_prompt_details.get("final_prompt_value", ""), bos_token=model_prompt_details.get("bos_token", ""), eos_token=model_prompt_details.get("eos_token", ""), messages=messages, ) # cloudflare adds the model to the api base api_base = api_base + model data = { "messages": messages, **optional_params, } ## LOGGING logging_obj.pre_call( input=messages, api_key=api_key, additional_args={ "headers": headers, "api_base": api_base, "complete_input_dict": data, }, ) ## COMPLETION CALL if "stream" in optional_params and optional_params["stream"] == True: response = requests.post( api_base, headers=headers, data=json.dumps(data), stream=optional_params["stream"], ) return response.iter_lines() else: response = requests.post(api_base, headers=headers, data=json.dumps(data)) ## LOGGING logging_obj.post_call( input=messages, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT if response.status_code != 200: raise CloudflareError( status_code=response.status_code, message=response.text ) completion_response = response.json() model_response["choices"][0]["message"]["content"] = completion_response[ "result" ]["response"] ## CALCULATING USAGE print_verbose( f"CALCULATING CLOUDFLARE TOKEN USAGE. Model Response: {model_response}; model_response['choices'][0]['message'].get('content', ''): {model_response['choices'][0]['message'].get('content', None)}" ) prompt_tokens = litellm.utils.get_token_count(messages=messages, model=model) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"].get("content", "")) ) model_response["created"] = int(time.time()) model_response["model"] = "cloudflare/" + model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) model_response.usage = usage return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass