from transformers import AutoModel, AutoTokenizer, LlamaTokenizer, LlamaForCausalLM import gradio as gr import torch import os import io import sys import platform import intel_extension_for_pytorch as ipex import intel_extension_for_pytorch._C as ipex_core from cpuinfo import get_cpu_info from contextlib import redirect_stdout DEVICE = "cuda" if torch.cuda.is_available() else "cpu" ROOT = '/' SELF_ROOT = '/proc/self/root' tokenizer = LlamaTokenizer.from_pretrained( "lmsys/vicuna-7b-v1.3", trust_remote_code=True ) model = LlamaForCausalLM.from_pretrained( "lmsys/vicuna-7b-v1.3", trust_remote_code=True ).to(DEVICE) model = model.eval() def in_chroot(): ''' Return true if running in a chroot environment. ''' try: root_stat = os.stat(ROOT) self_stat = os.stat(SELF_ROOT) except FileNotFoundError as e: sys.exit(f"ERROR: Failed to stat: {e}") root_inode = root_stat.st_ino self_inode = self_stat.st_ino # Inode 2 is the root inode for most filesystems. # However, XFS uses 128 for root. if root_inode not in [2, 128]: return True return not (root_inode == self_inode) def get_features(): ''' Returns a dictionary of all feature: key: feature name. value: Boolean showing if feature available. ''' cpu_info = get_cpu_info() flags = cpu_info["flags"] detect_ipex_amx_enabled = lambda: ipex_core._get_current_isa_level() == 'AMX' detect_ipex_amx_available = ( lambda: ipex_core._get_highest_cpu_support_isa_level() == 'AMX' ) features = { 'VM': 'hypervisor' in flags, 'TDX TD': 'tdx_guest' in flags, 'AMX available': 'amx_tile' in flags, 'AMX-BF16 available': 'amx_bf16' in flags, 'AMX-INT8 available': 'amx_int8' in flags, 'AVX-VNNI available': 'avx_vnni' in flags, 'AVX512-VNNI available': 'avx512_vnni' in flags, 'AVX512-FP16 available': 'avx512_fp16' in flags, 'AVX512-BF16 available': 'avx512_bf16' in flags, 'AMX IPEX available': detect_ipex_amx_available(), 'AMX IPEX enabled': detect_ipex_amx_enabled(), } return features def get_debug_details(): ''' Return a block of markdown text that shows useful debug information. ''' # ipex.version() prints to stdout, so redirect stdout to # capture the output. buffer = io.StringIO() with redirect_stdout(buffer): ipex.version() ipex_version_details = buffer.getvalue().replace("\n", ", ") ipex_current_isa_level = ipex_core._get_current_isa_level() ipex_max_isa_level = ipex_core._get_highest_cpu_support_isa_level() ipex_env_var = os.getenv('ATEN_CPU_CAPABILITY') onednn_env_var = os.getenv('ONEDNN_MAX_CPU_ISA') with open('/proc/version', 'r') as f: kernel_version = f.read().rstrip() in_chroot_result = in_chroot() cpu_info = get_cpu_info() flags = cpu_info["flags"] # Note that rather than using `
`, we could use gradio.Accordian(), # but the markdown version is more visually compact. md = f"""
Click to show debug details | Feature | Value | |-|-| | Arch | `{cpu_info['arch']}` | | CPU | `{cpu_info['brand_raw']}` | | CPU flags | `{flags}` | | Kernel | `{kernel_version}` | | Python version | `{sys.version}` (implementation: `{platform.python_implementation()}`) | | Python version details | `{sys.version_info}` | | PyTorch version | `{torch.__version__}` | | IPEX version | `{ipex.ipex_version}` | | IPEX CPU detected | `{ipex_core._has_cpu()}` | | IPEX XPU detected | `{ipex_core._has_xpu()}` | | IPEX version details | `{ipex_version_details}` | | IPEX env var `ATEN_CPU_CAPABILITY` | `{ipex_env_var}` | | IPEX current ISA level | `{ipex_current_isa_level}` | | IPEX max ISA level | `{ipex_max_isa_level}` | | oneDNN env var `ONEDNN_MAX_CPU_ISA` | `{onednn_env_var}` | | in chroot | `{in_chroot_result}` |
""" return md def predict(input, history=None): if history is None: history = [] new_user_input_ids = tokenizer.encode( input + tokenizer.eos_token, return_tensors='pt' ) bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) history = model.generate( bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id ).tolist() # convert the tokens to text, and then split the responses into the right format response = tokenizer.decode(history[0]).split("<|endoftext|>") response = [ (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) ] # convert to tuples of list return response, history with gr.Blocks() as demo: gr.Markdown( '''## Confidential HuggingFace Runner ''' ) state = gr.State([]) chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400) with gr.Row(): with gr.Column(scale=4): txt = gr.Textbox( show_label=False, placeholder="Enter text and press enter" ).style(container=False) with gr.Column(scale=1): button = gr.Button("Generate") txt.submit(predict, [txt, state], [chatbot, state]) button.click(predict, [txt, state], [chatbot, state]) with gr.Row(): features_dict = get_features() all_features = features_dict.keys() # Get a list of feature names that are actually set/available set_features = [key for key in features_dict if features_dict[key]] gr.CheckboxGroup( all_features, label="Features", # Make the boxes read-only interactive=False, # Specify which features were detected value=set_features, info="Features detected from environment", ) with gr.Row(): debug_details = get_debug_details() gr.Markdown(debug_details) demo.queue().launch(share=True, server_name="0.0.0.0")