import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from langchain_google_genai import GoogleGenerativeAIEmbeddings import google.generativeai as genai from langchain_community.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv import shutil import argparse PDF_PATH=os.path.join(os.path.dirname(__file__), "docs") def load_pdfs(): faiss_index_path = os.path.join(os.path.dirname(__file__), "faiss_index") if os.path.exists(faiss_index_path): return pdfs = [f for f in os.listdir(PDF_PATH) if os.path.isfile(os.path.join(PDF_PATH, f))] text="" for pdf in pdfs: print("process PDF: %s..." % pdf) pdf_reader= PdfReader(os.path.join(PDF_PATH, pdf)) for page in pdf_reader.pages: text+= page.extract_text() text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) text_chunks = text_splitter.split_text(text) embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") return text def get_conversational_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain def user_input(user_question): embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") new_db = FAISS.load_local("faiss_index", embeddings) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain( {"input_documents":docs, "question": user_question} , return_only_outputs=True) print(response) st.write("Reply: ", response["output_text"]) def main(): load_pdfs() st.set_page_config("TDX Doctor") st.header("Please ask questions related to TDX or UEFI") st.markdown("Ask a question like following styles:") st.markdown("- please describe EFI PEI Core in 200 words.") st.markdown("- please describe intel tdx in 200 words.") st.markdown("- please explain SEAMCALL in 200 words.") user_question = st.text_input("input", label_visibility="hidden") if user_question: user_input(user_question) if __name__ == "__main__": main()