File size: 5,051 Bytes
e4a226d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch.fft as fft
import numpy as np
import librosa as li
import math
from scipy.signal import get_window


def safe_log(x):
    return torch.log(x + 1e-7)


@torch.no_grad()
def mean_std_loudness(dataset):
    mean = 0
    std = 0
    n = 0
    for _, _, l in dataset:
        n += 1
        mean += (l.mean().item() - mean) / n
        std += (l.std().item() - std) / n
    return mean, std


def multiscale_fft(signal, scales, overlap):
    stfts = []
    for s in scales:
        S = torch.stft(
            signal,
            s,
            int(s * (1 - overlap)),
            s,
            torch.hann_window(s).to(signal),
            True,
            normalized=True,
            return_complex=True,
        ).abs()
        stfts.append(S)
    return stfts


def resample(x, factor: int):
    batch, frame, channel = x.shape
    x = x.permute(0, 2, 1).reshape(batch * channel, 1, frame)

    window = torch.hann_window(
        factor * 2,
        dtype=x.dtype,
        device=x.device,
    ).reshape(1, 1, -1)
    y = torch.zeros(x.shape[0], x.shape[1], factor * x.shape[2]).to(x)
    y[..., ::factor] = x
    y[..., -1:] = x[..., -1:]
    y = torch.nn.functional.pad(y, [factor, factor])
    y = torch.nn.functional.conv1d(y, window)[..., :-1]

    y = y.reshape(batch, channel, factor * frame).permute(0, 2, 1)

    return y


def upsample(signal, factor):
    signal = signal.permute(0, 2, 1)
    signal = nn.functional.interpolate(signal, size=signal.shape[-1] * factor)
    return signal.permute(0, 2, 1)


def remove_above_nyquist(amplitudes, pitch, sampling_rate):
    n_harm = amplitudes.shape[-1]
    pitches = pitch * torch.arange(1, n_harm + 1).to(pitch)
    aa = (pitches < sampling_rate / 2).float() + 1e-4
    return amplitudes * aa


def scale_function(x):
    return 2 * torch.sigmoid(x) ** (math.log(10)) + 1e-7


def extract_loudness(signal, sampling_rate, block_size, n_fft=2048):
    S = li.stft(
        signal,
        n_fft=n_fft,
        hop_length=block_size,
        win_length=n_fft,
        center=True,
    )
    S = np.log(abs(S) + 1e-7)
    f = li.fft_frequencies(sampling_rate, n_fft)
    a_weight = li.A_weighting(f)

    S = S + a_weight.reshape(-1, 1)

    S = np.mean(S, 0)[..., :-1]

    return S


def extract_pitch(signal, sampling_rate, block_size):
    length = signal.shape[-1] // block_size
    f0 = crepe.predict(
        signal,
        sampling_rate,
        step_size=int(1000 * block_size / sampling_rate),
        verbose=1,
        center=True,
        viterbi=True,
    )
    f0 = f0[1].reshape(-1)[:-1]

    if f0.shape[-1] != length:
        f0 = np.interp(
            np.linspace(0, 1, length, endpoint=False),
            np.linspace(0, 1, f0.shape[-1], endpoint=False),
            f0,
        )

    return f0


def mlp(in_size, hidden_size, n_layers):
    channels = [in_size] + (n_layers) * [hidden_size]
    net = []
    for i in range(n_layers):
        net.append(nn.Linear(channels[i], channels[i + 1]))
        net.append(nn.LayerNorm(channels[i + 1]))
        net.append(nn.LeakyReLU())
    return nn.Sequential(*net)


def gru(n_input, hidden_size):
    return nn.GRU(n_input * hidden_size, hidden_size, batch_first=True)


def harmonic_synth(pitch, amplitudes, sampling_rate):
    n_harmonic = amplitudes.shape[-1]
    omega = torch.cumsum(2 * math.pi * pitch / sampling_rate, 1)
    omegas = omega * torch.arange(1, n_harmonic + 1).to(omega)
    signal = (torch.sin(omegas) * amplitudes).sum(-1, keepdim=True)
    return signal


def amp_to_impulse_response(amp, target_size):
    amp = torch.stack([amp, torch.zeros_like(amp)], -1)
    amp = torch.view_as_complex(amp)
    amp = fft.irfft(amp)

    filter_size = amp.shape[-1]

    amp = torch.roll(amp, filter_size // 2, -1)
    win = torch.hann_window(filter_size, dtype=amp.dtype, device=amp.device)

    amp = amp * win

    amp = nn.functional.pad(amp, (0, int(target_size) - int(filter_size)))
    amp = torch.roll(amp, -filter_size // 2, -1)

    return amp


def fft_convolve(signal, kernel):
    signal = nn.functional.pad(signal, (0, signal.shape[-1]))
    kernel = nn.functional.pad(kernel, (kernel.shape[-1], 0))

    output = fft.irfft(fft.rfft(signal) * fft.rfft(kernel))
    output = output[..., output.shape[-1] // 2:]

    return output


def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False):
    if win_type == 'None' or win_type is None:
        window = np.ones(win_len)
    else:
        window = get_window(win_type, win_len, fftbins=True)  # **0.5

    N = fft_len
    fourier_basis = np.fft.rfft(np.eye(N))[:win_len]
    real_kernel = np.real(fourier_basis)
    imag_kernel = np.imag(fourier_basis)
    kernel = np.concatenate([real_kernel, imag_kernel], 1).T

    if invers:
        kernel = np.linalg.pinv(kernel).T

    kernel = kernel * window
    kernel = kernel[:, None, :]
    return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None, :, None].astype(np.float32))