Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,276 Bytes
03ab858 27f758a 03ab858 27f758a 03ab858 3f7ef09 03ab858 e3eb418 4b51216 c62c7e5 03ab858 4b51216 c893504 df141af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import numpy as np
import gradio as gr
from PIL import Image
import keras
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("keras-io/lowlight-enhance-mirnet", compile=False)
examples = ['examples/179.png', 'examples/493.png', 'examples/780.png']
def infer(original_image):
image = keras.preprocessing.image.img_to_array(original_image)
image = image.astype("float32") / 255.0
image = np.expand_dims(image, axis=0)
output = model.predict(image)
output_image = output[0] * 255.0
output_image = output_image.clip(0, 255)
output_image = output_image.reshape(
(np.shape(output_image)[0], np.shape(output_image)[1], 3)
)
output_image = np.uint32(output_image)
return output_image
iface = gr.Interface(
fn=infer,
title="Low Light Image Enhancement",
description = "Keras Implementation of MIRNet model for light up the dark image ππ",
inputs=[gr.inputs.Image(label="image", type="pil")],
outputs="image",
examples=examples,
article = "Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the keras example from <a href=\"https://keras.io/examples/vision/mirnet/\">Soumik Rakshit</a>",
).launch(enable_queue=True, cache_examples=True) |