import numpy as np import gradio as gr from PIL import Image import keras from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("keras-io/lowlight-enhance-mirnet", compile=False) examples = ['examples/179.png', 'examples/493.png', 'examples/780.png'] def infer(original_image): image = keras.utils.img_to_array(original_image) image = image.astype("float32") / 255.0 image = np.expand_dims(image, axis=0) output = model.predict(image) output_image = output[0] * 255.0 output_image = output_image.clip(0, 255) output_image = output_image.reshape( (np.shape(output_image)[0], np.shape(output_image)[1], 3) ) output_image = np.uint32(output_image) return output_image iface = gr.Interface( fn=infer, title="Low Light Image Enhancement", description = "Keras Implementation of MIRNet model for light up the dark image 🌆🎆", inputs=[gr.inputs.Image(label="image", type="pil", shape=(960, 640))], outputs="image", examples=examples, cache_examples=True, article = "Author: Vu Minh Chien. Based on the keras example from Soumik Rakshit", cache_examples=True).launch(enable_queue=True)