import gradio as gr import numpy as np from numpy import asarray from PIL import Image from huggingface_hub import from_pretrained_keras model = from_pretrained_keras('keras-io/SimSiam') index_to_name = {0:'Airplane', 1:'Car', 2:'Bird', 3:'Cat', 4:'Deer', 5:'Dog', 6:'Frog', 7:'Horse', 8:'Ship', 9:'Truck'} def predict_with_simsiam(original_image): image = asarray(original_image) image = np.expand_dims(image, axis=0) pred_prob = model.predict(image).flatten().tolist() return {index_to_name[i]: pred_prob[i] for i in range(10)} title = "Self-supervised contrastive learning with SimSiam" description = "This space implements a SimSiam network for image classification of the Cifar 10 dataset." examples = ['horse1.png', 'airplane4.png', 'dog6.png'] article = """

Keras Example given by Sayak Paul
Space by @Jezia

""" iface = gr.Interface(predict_with_simsiam, inputs=[gr.inputs.Image(label="image", type="pil")], outputs="label", title=title, description=description, article=article, examples=examples) iface.launch(debug='True')