from huggingface_hub import from_pretrained_keras import tensorflow as tf import gradio as gr # download the model in the global context vis_model = from_pretrained_keras("ariG23498/involution") def infer(test_image): # convert the image to a tensorflow tensor and resize the image # to a constant 32x32 image = tf.constant(test_image) image = tf.image.resize(image, (32, 32)) # Use the model and get the activation maps (inv1_out, inv2_out, inv3_out) = vis_model.predict(image[None, ...]) _, inv1_kernel = inv1_out _, inv2_kernel = inv2_out _, inv3_kernel = inv3_out inv1_kernel = tf.reduce_sum(inv1_kernel, axis=[-1, -2, -3]) inv2_kernel = tf.reduce_sum(inv2_kernel, axis=[-1, -2, -3]) inv3_kernel = tf.reduce_sum(inv3_kernel, axis=[-1, -2, -3]) return ( tf.keras.utils.array_to_img(inv1_kernel[0, ..., None]), tf.keras.utils.array_to_img(inv2_kernel[0, ..., None]), tf.keras.utils.array_to_img(inv3_kernel[0, ..., None]), ) # define the article article = """
Authors: Aritra Roy Gosthipaty | Ritwik Raha
Involution: Inverting the Inherence of Convolution for Visual Recognition
Convolution Kernel Convolution
Involution Kernel Involution
""" # define the description description=""" Visualize the activation maps from the Involution Kernel.🕵🏻‍♂️ """ iface = gr.Interface( fn=infer, title="Involutional Neural Networks", article=article, description=description, inputs=gr.inputs.Image(label="Input Image"), outputs=gr.outputs.Carousel( [ gr.outputs.Image(label="Activation from Kernel 1"), gr.outputs.Image(label="Activation from Kernel 2"), gr.outputs.Image(label="Activation from Kernel 3"), ] ), examples=[["examples/lama.jpeg"], ["examples/dalai_lama.jpeg"]], ).launch(share=True)