reichenbach's picture
Indent Correction
95eebfd
import os
os.system('pip install tensorflow')
import json
import numpy as np
import gradio as gr
import tensorflow as tf
from tensorflow import keras
from huggingface_hub.keras_mixin import from_pretrained_keras
class CustomNonPaddingTokenLoss(keras.losses.Loss):
def __init__(self, name="custom_ner_loss"):
super().__init__(name=name)
def call(self, y_true, y_pred):
loss_fn = keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=keras.losses.Reduction.NONE
)
loss = loss_fn(y_true, y_pred)
mask = tf.cast((y_true > 0), dtype=tf.float32)
loss = loss * mask
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
def lowercase_and_convert_to_ids(tokens):
tokens = tf.strings.lower(tokens)
return lookup_layer(tokens)
def tokenize_and_convert_to_ids(text):
tokens = text.split()
return lowercase_and_convert_to_ids(tokens)
def ner_tagging(text_1):
with open('mapping.json','r') as f:
mapping = json.load(f)
ner_model = from_pretrained_keras("keras-io/ner-with-transformers",
custom_objects={'CustomNonPaddingTokenLoss':CustomNonPaddingTokenLoss},
compile=False)
sample_input = tokenize_and_convert_to_ids(text_1)
sample_input = tf.reshape(sample_input, shape=[1, -1])
output = ner_model.predict(sample_input)
prediction = np.argmax(output, axis=-1)[0]
prediction = [mapping[str(i)] for i in prediction]
text_2 = text_1.split(" ")
output = []
for w in range(len(text_2)):
if prediction[w] != "O":
output.extend([(text_2[w], prediction[w]), (" ", None)])
else:
output.extend([(text_2[w], None), (" ", None)])
return output
text_1 = gr.inputs.Textbox(lines=5)
ner_tag = gr.outputs.Textbox()
with open("vocab.json",'r') as f:
vocab = json.load(f)
lookup_layer = keras.layers.StringLookup(vocabulary=vocab['tokens'])
iface = gr.Interface(ner_tagging,
inputs=text_1,outputs=['highlight'], examples=[['EU rejects German call to boycott British lamb .'],
["He said further scientific study was required and if it was found that action was needed it should be taken by the European Union ."]], title="Named Entity Recognition with Transformers",
description = "Named Entity Recognition with Transformers on CoNLL2003 Dataset",
article = "Author: <a href=\"https://huggingface.co/reichenbach\">Rishav Chandra Varma</a>")
iface.launch()