Spaces:
Runtime error
Runtime error
File size: 2,168 Bytes
9b4a05a a1fac21 3243b25 000c87e 8638595 9b4a05a 3122c78 e46d735 9b4a05a 3243b25 7c71738 1248637 a1fac21 a87b5fc a1fac21 a87b5fc a1fac21 a87b5fc a1fac21 a87b5fc a1f8014 e07aae5 a1f8014 a87b5fc 4bf66ef a1fac21 1fd4941 4c267fb 9b4a05a d570c51 cb49204 4c267fb a1fac21 9090de4 129df37 9b4a05a f372f78 410ea82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import tensorflow as tf
import math
import numpy as np
from PIL import Image
from tensorflow.keras.preprocessing.image import img_to_array
from huggingface_hub import from_pretrained_keras
import gradio as gr
model = from_pretrained_keras("keras-io/super-resolution")
def infer(image):
img = Image.fromarray(image)
img = img.resize((100,100))
ycbcr = img.convert("YCbCr")
y, cb, cr = ycbcr.split()
y = img_to_array(y)
y = y.astype("float32") / 255.0
input = np.expand_dims(y, axis=0)
out = model.predict(input)
out_img_y = out[0]
out_img_y *= 255.0
# Restore the image in RGB color space.
out_img_y = out_img_y.clip(0, 255)
out_img_y = out_img_y.reshape((np.shape(out_img_y)[0], np.shape(out_img_y)[1]))
out_img_y = Image.fromarray(np.uint8(out_img_y), mode="L")
out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC)
out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC)
out_img = Image.merge("YCbCr", (out_img_y, out_img_cb, out_img_cr)).convert(
"RGB"
)
return (img,out_img)
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1609.05158' target='_blank'>Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network</a></p><center> <a href='https://keras.io/examples/vision/super_resolution_sub_pixel/' target='_blank'>Image Super-Resolution using an Efficient Sub-Pixel CNN</a></p> <center>Contributors: <a href='https://twitter.com/Cr0wley_zz'>Devjyoti Chakraborty</a>|<a href='https://twitter.com/ritwik_raha'>Ritwik Raha</a>|<a href='https://twitter.com/ariG23498'>Aritra Roy Gosthipaty</a></center>"
iface = gr.Interface(
fn=infer,
title = " Image Super-resolution",
description = "This space is a demo of the keras tutorial 'Image Super-Resolution using an Efficient Sub-Pixel CNN' based on the paper 'Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network' 👀",
article = article,
inputs=gr.inputs.Image(label="Input Image"),
outputs=[gr.outputs.Image(label="Resized 100x100 image"),
gr.outputs.Image(label="Super-resolution 300x300 image")
],
examples=[["camel.jpg"], ["pokemon.jpg"]],
).launch() |