kevinwang676
commited on
Commit
•
6af2279
0
Parent(s):
Duplicate from kevinwang676/Bark-UI-with-Voice-Cloning
Browse files- .gitattributes +40 -0
- README.md +14 -0
- SE_checkpoint.pth.tar +3 -0
- app.py +555 -0
- bark/__init__.py +2 -0
- bark/api.py +158 -0
- bark/assets/prompts/announcer.npz +3 -0
- bark/assets/prompts/en_speaker_0.npz +3 -0
- bark/assets/prompts/en_speaker_1.npz +3 -0
- bark/assets/prompts/en_speaker_2.npz +3 -0
- bark/assets/prompts/en_speaker_3.npz +3 -0
- bark/assets/prompts/en_speaker_4.npz +3 -0
- bark/assets/prompts/en_speaker_5.npz +3 -0
- bark/assets/prompts/en_speaker_6.npz +3 -0
- bark/assets/prompts/en_speaker_7.npz +3 -0
- bark/assets/prompts/en_speaker_8.npz +3 -0
- bark/assets/prompts/en_speaker_9.npz +3 -0
- bark/assets/prompts/zh_speaker_0.npz +3 -0
- bark/assets/prompts/zh_speaker_1.npz +3 -0
- bark/assets/prompts/zh_speaker_2.npz +3 -0
- bark/assets/prompts/zh_speaker_3.npz +3 -0
- bark/assets/prompts/zh_speaker_4.npz +3 -0
- bark/assets/prompts/zh_speaker_5.npz +3 -0
- bark/assets/prompts/zh_speaker_6.npz +3 -0
- bark/assets/prompts/zh_speaker_7.npz +3 -0
- bark/assets/prompts/zh_speaker_8.npz +3 -0
- bark/assets/prompts/zh_speaker_9.npz +3 -0
- bark/clonevoice.py +41 -0
- bark/generation.py +865 -0
- bark/model.py +218 -0
- bark/model_fine.py +149 -0
- bark/settings.py +7 -0
- best_model.pth.tar +3 -0
- config.json +373 -0
- config.yaml +8 -0
- config_se.json +119 -0
- id3tagging.py +14 -0
- language_ids.json +5 -0
- parseinput.py +129 -0
- pyproject.toml +63 -0
- requirements.txt +10 -0
- settings.py +39 -0
- setup.py +3 -0
- speakers.json +0 -0
.gitattributes
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
SE_checkpoint.pth.tar filter=lfs diff=lfs merge=lfs -text
|
36 |
+
best_model.pth.tar filter=lfs diff=lfs merge=lfs -text
|
37 |
+
nana_longest_vocal.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
+
test.wav filter=lfs diff=lfs merge=lfs -text
|
39 |
+
reference.wav filter=lfs diff=lfs merge=lfs -text
|
40 |
+
ref.wav filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Bark with Voice Cloning
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.27.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
duplicated_from: kevinwang676/Bark-UI-with-Voice-Cloning
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
SE_checkpoint.pth.tar
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f96efb20cbeeefd81fd8336d7f0155bf8902f82f9474e58ccb19d9e12345172
|
3 |
+
size 44610930
|
app.py
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
os.system("git clone https://github.com/C0untFloyd/bark-gui.git")
|
5 |
+
sys.path.append("./bark-gui/")
|
6 |
+
|
7 |
+
from cProfile import label
|
8 |
+
from distutils.command.check import check
|
9 |
+
from doctest import Example
|
10 |
+
import gradio as gr
|
11 |
+
import numpy as np
|
12 |
+
import logging
|
13 |
+
import torch
|
14 |
+
import pytorch_seed
|
15 |
+
import time
|
16 |
+
|
17 |
+
from xml.sax import saxutils
|
18 |
+
from bark.api import generate_with_settings
|
19 |
+
from bark.api import save_as_prompt
|
20 |
+
from settings import Settings
|
21 |
+
#import nltk
|
22 |
+
|
23 |
+
from bark import SAMPLE_RATE
|
24 |
+
from bark.clonevoice import clone_voice
|
25 |
+
from bark.generation import SAMPLE_RATE, preload_models
|
26 |
+
from scipy.io.wavfile import write as write_wav
|
27 |
+
from parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml
|
28 |
+
from datetime import datetime
|
29 |
+
from tqdm.auto import tqdm
|
30 |
+
from id3tagging import add_id3_tag
|
31 |
+
|
32 |
+
import shutil
|
33 |
+
|
34 |
+
import string
|
35 |
+
import argparse
|
36 |
+
import json
|
37 |
+
|
38 |
+
from TTS.tts.utils.synthesis import synthesis
|
39 |
+
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
40 |
+
try:
|
41 |
+
from TTS.utils.audio import AudioProcessor
|
42 |
+
except:
|
43 |
+
from TTS.utils.audio import AudioProcessor
|
44 |
+
|
45 |
+
|
46 |
+
from TTS.tts.models import setup_model
|
47 |
+
from TTS.config import load_config
|
48 |
+
from TTS.tts.models.vits import *
|
49 |
+
|
50 |
+
from TTS.tts.utils.speakers import SpeakerManager
|
51 |
+
from pydub import AudioSegment
|
52 |
+
|
53 |
+
# from google.colab import files
|
54 |
+
import librosa
|
55 |
+
|
56 |
+
from scipy.io.wavfile import write, read
|
57 |
+
|
58 |
+
import subprocess
|
59 |
+
|
60 |
+
|
61 |
+
OUTPUTFOLDER = "Outputs"
|
62 |
+
|
63 |
+
|
64 |
+
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, progress=gr.Progress(track_tqdm=True)):
|
65 |
+
if text == None or len(text) < 1:
|
66 |
+
raise gr.Error('No text entered!')
|
67 |
+
|
68 |
+
# Chunk the text into smaller pieces then combine the generated audio
|
69 |
+
|
70 |
+
# generation settings
|
71 |
+
if selected_speaker == 'None':
|
72 |
+
selected_speaker = None
|
73 |
+
if seed != None and seed > 2**32 - 1:
|
74 |
+
logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random")
|
75 |
+
seed = None
|
76 |
+
if seed == None or seed <= 0:
|
77 |
+
seed = np.random.default_rng().integers(1, 2**32 - 1)
|
78 |
+
assert(0 < seed and seed < 2**32)
|
79 |
+
|
80 |
+
voice_name = selected_speaker
|
81 |
+
use_last_generation_as_history = "Use last generation as history" in complete_settings
|
82 |
+
save_last_generation = "Save generation as Voice" in complete_settings
|
83 |
+
progress(0, desc="Generating")
|
84 |
+
|
85 |
+
silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.float32) # quarter second of silence
|
86 |
+
silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) # half a second of silence
|
87 |
+
full_generation = None
|
88 |
+
|
89 |
+
all_parts = []
|
90 |
+
complete_text = ""
|
91 |
+
text = text.lstrip()
|
92 |
+
if is_ssml(text):
|
93 |
+
list_speak = create_clips_from_ssml(text)
|
94 |
+
prev_speaker = None
|
95 |
+
for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)):
|
96 |
+
selected_speaker = clip[0]
|
97 |
+
# Add pause break between speakers
|
98 |
+
if i > 0 and selected_speaker != prev_speaker:
|
99 |
+
all_parts += [silencelong.copy()]
|
100 |
+
prev_speaker = selected_speaker
|
101 |
+
text = clip[1]
|
102 |
+
text = saxutils.unescape(text)
|
103 |
+
if selected_speaker == "None":
|
104 |
+
selected_speaker = None
|
105 |
+
|
106 |
+
print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {seed}):`{text}`")
|
107 |
+
complete_text += text
|
108 |
+
with pytorch_seed.SavedRNG(seed):
|
109 |
+
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
|
110 |
+
seed = torch.random.initial_seed()
|
111 |
+
if len(list_speak) > 1:
|
112 |
+
filename = create_filename(OUTPUTFOLDER, seed, "audioclip",".wav")
|
113 |
+
save_wav(audio_array, filename)
|
114 |
+
add_id3_tag(filename, text, selected_speaker, seed)
|
115 |
+
|
116 |
+
all_parts += [audio_array]
|
117 |
+
else:
|
118 |
+
texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length)
|
119 |
+
for i, text in tqdm(enumerate(texts), total=len(texts)):
|
120 |
+
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {seed}):`{text}`")
|
121 |
+
complete_text += text
|
122 |
+
if quick_generation == True:
|
123 |
+
with pytorch_seed.SavedRNG(seed):
|
124 |
+
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
|
125 |
+
seed = torch.random.initial_seed()
|
126 |
+
else:
|
127 |
+
full_output = use_last_generation_as_history or save_last_generation
|
128 |
+
if full_output:
|
129 |
+
full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True)
|
130 |
+
else:
|
131 |
+
audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
|
132 |
+
|
133 |
+
# Noticed this in the HF Demo - convert to 16bit int -32767/32767 - most used audio format
|
134 |
+
# audio_array = (audio_array * 32767).astype(np.int16)
|
135 |
+
|
136 |
+
if len(texts) > 1:
|
137 |
+
filename = create_filename(OUTPUTFOLDER, seed, "audioclip",".wav")
|
138 |
+
save_wav(audio_array, filename)
|
139 |
+
add_id3_tag(filename, text, selected_speaker, seed)
|
140 |
+
|
141 |
+
if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True):
|
142 |
+
# save to npz
|
143 |
+
voice_name = create_filename(OUTPUTFOLDER, seed, "audioclip", ".npz")
|
144 |
+
save_as_prompt(voice_name, full_generation)
|
145 |
+
if use_last_generation_as_history:
|
146 |
+
selected_speaker = voice_name
|
147 |
+
|
148 |
+
all_parts += [audio_array]
|
149 |
+
# Add short pause between sentences
|
150 |
+
if text[-1] in "!?.\n" and i > 1:
|
151 |
+
all_parts += [silenceshort.copy()]
|
152 |
+
|
153 |
+
# save & play audio
|
154 |
+
result = create_filename(OUTPUTFOLDER, seed, "final",".wav")
|
155 |
+
save_wav(np.concatenate(all_parts), result)
|
156 |
+
# write id3 tag with text truncated to 60 chars, as a precaution...
|
157 |
+
add_id3_tag(result, complete_text, selected_speaker, seed)
|
158 |
+
return result
|
159 |
+
|
160 |
+
def create_filename(path, seed, name, extension):
|
161 |
+
now = datetime.now()
|
162 |
+
date_str =now.strftime("%m-%d-%Y")
|
163 |
+
outputs_folder = os.path.join(os.getcwd(), path)
|
164 |
+
if not os.path.exists(outputs_folder):
|
165 |
+
os.makedirs(outputs_folder)
|
166 |
+
|
167 |
+
sub_folder = os.path.join(outputs_folder, date_str)
|
168 |
+
if not os.path.exists(sub_folder):
|
169 |
+
os.makedirs(sub_folder)
|
170 |
+
|
171 |
+
time_str = now.strftime("%H-%M-%S")
|
172 |
+
file_name = f"{name}_{time_str}_s{seed}{extension}"
|
173 |
+
return os.path.join(sub_folder, file_name)
|
174 |
+
|
175 |
+
|
176 |
+
def save_wav(audio_array, filename):
|
177 |
+
write_wav(filename, SAMPLE_RATE, audio_array)
|
178 |
+
|
179 |
+
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt):
|
180 |
+
np.savez_compressed(
|
181 |
+
filename,
|
182 |
+
semantic_prompt=semantic_prompt,
|
183 |
+
coarse_prompt=coarse_prompt,
|
184 |
+
fine_prompt=fine_prompt
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
def on_quick_gen_changed(checkbox):
|
189 |
+
if checkbox == False:
|
190 |
+
return gr.CheckboxGroup.update(visible=True)
|
191 |
+
return gr.CheckboxGroup.update(visible=False)
|
192 |
+
|
193 |
+
def delete_output_files(checkbox_state):
|
194 |
+
if checkbox_state:
|
195 |
+
outputs_folder = os.path.join(os.getcwd(), OUTPUTFOLDER)
|
196 |
+
if os.path.exists(outputs_folder):
|
197 |
+
purgedir(outputs_folder)
|
198 |
+
return False
|
199 |
+
|
200 |
+
|
201 |
+
# https://stackoverflow.com/a/54494779
|
202 |
+
def purgedir(parent):
|
203 |
+
for root, dirs, files in os.walk(parent):
|
204 |
+
for item in files:
|
205 |
+
# Delete subordinate files
|
206 |
+
filespec = os.path.join(root, item)
|
207 |
+
os.unlink(filespec)
|
208 |
+
for item in dirs:
|
209 |
+
# Recursively perform this operation for subordinate directories
|
210 |
+
purgedir(os.path.join(root, item))
|
211 |
+
|
212 |
+
def convert_text_to_ssml(text, selected_speaker):
|
213 |
+
return build_ssml(text, selected_speaker)
|
214 |
+
|
215 |
+
|
216 |
+
def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker):
|
217 |
+
settings.selected_theme = themes
|
218 |
+
settings.server_name = input_server_name
|
219 |
+
settings.server_port = input_server_port
|
220 |
+
settings.server_share = input_server_public
|
221 |
+
settings.input_text_desired_length = input_desired_len
|
222 |
+
settings.input_text_max_length = input_max_len
|
223 |
+
settings.silence_sentence = input_silence_break
|
224 |
+
settings.silence_speaker = input_silence_speaker
|
225 |
+
settings.save()
|
226 |
+
|
227 |
+
def restart():
|
228 |
+
global restart_server
|
229 |
+
restart_server = True
|
230 |
+
|
231 |
+
|
232 |
+
def create_version_html():
|
233 |
+
python_version = ".".join([str(x) for x in sys.version_info[0:3]])
|
234 |
+
versions_html = f"""
|
235 |
+
python: <span title="{sys.version}">{python_version}</span>
|
236 |
+
•
|
237 |
+
torch: {getattr(torch, '__long_version__',torch.__version__)}
|
238 |
+
•
|
239 |
+
gradio: {gr.__version__}
|
240 |
+
"""
|
241 |
+
return versions_html
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
logger = logging.getLogger(__name__)
|
246 |
+
APPTITLE = "Bark UI Enhanced v0.4.6"
|
247 |
+
|
248 |
+
|
249 |
+
autolaunch = False
|
250 |
+
|
251 |
+
if len(sys.argv) > 1:
|
252 |
+
autolaunch = "-autolaunch" in sys.argv
|
253 |
+
|
254 |
+
|
255 |
+
if torch.cuda.is_available() == False:
|
256 |
+
os.environ['BARK_FORCE_CPU'] = 'True'
|
257 |
+
logger.warning("No CUDA detected, fallback to CPU!")
|
258 |
+
|
259 |
+
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}')
|
260 |
+
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}')
|
261 |
+
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}')
|
262 |
+
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}')
|
263 |
+
print(f'autolaunch={autolaunch}\n\n')
|
264 |
+
|
265 |
+
#print("Updating nltk\n")
|
266 |
+
#nltk.download('punkt')
|
267 |
+
|
268 |
+
print("Preloading Models\n")
|
269 |
+
preload_models()
|
270 |
+
|
271 |
+
settings = Settings('config.yaml')
|
272 |
+
|
273 |
+
# Collect all existing speakers/voices in dir
|
274 |
+
speakers_list = []
|
275 |
+
|
276 |
+
for root, dirs, files in os.walk("./bark/assets/prompts"):
|
277 |
+
for file in files:
|
278 |
+
if(file.endswith(".npz")):
|
279 |
+
pathpart = root.replace("./bark/assets/prompts", "")
|
280 |
+
name = os.path.join(pathpart, file[:-4])
|
281 |
+
if name.startswith("/") or name.startswith("\\"):
|
282 |
+
name = name[1:]
|
283 |
+
speakers_list.append(name)
|
284 |
+
|
285 |
+
speakers_list = sorted(speakers_list, key=lambda x: x.lower())
|
286 |
+
speakers_list.insert(0, 'None')
|
287 |
+
|
288 |
+
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"]
|
289 |
+
|
290 |
+
seed = -1
|
291 |
+
server_name = settings.server_name
|
292 |
+
if len(server_name) < 1:
|
293 |
+
server_name = None
|
294 |
+
server_port = settings.server_port
|
295 |
+
if server_port <= 0:
|
296 |
+
server_port = None
|
297 |
+
global run_server
|
298 |
+
global restart_server
|
299 |
+
|
300 |
+
run_server = True
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
'''
|
306 |
+
from google.colab import drive
|
307 |
+
drive.mount('/content/drive')
|
308 |
+
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
|
309 |
+
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')
|
310 |
+
shutil.copy(src_path, dst_path)
|
311 |
+
'''
|
312 |
+
|
313 |
+
TTS_PATH = "TTS/"
|
314 |
+
|
315 |
+
# add libraries into environment
|
316 |
+
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
|
317 |
+
|
318 |
+
# Paths definition
|
319 |
+
|
320 |
+
OUT_PATH = 'out/'
|
321 |
+
|
322 |
+
# create output path
|
323 |
+
os.makedirs(OUT_PATH, exist_ok=True)
|
324 |
+
|
325 |
+
# model vars
|
326 |
+
MODEL_PATH = 'best_model.pth.tar'
|
327 |
+
CONFIG_PATH = 'config.json'
|
328 |
+
TTS_LANGUAGES = "language_ids.json"
|
329 |
+
TTS_SPEAKERS = "speakers.json"
|
330 |
+
USE_CUDA = torch.cuda.is_available()
|
331 |
+
|
332 |
+
# load the config
|
333 |
+
C = load_config(CONFIG_PATH)
|
334 |
+
|
335 |
+
# load the audio processor
|
336 |
+
ap = AudioProcessor(**C.audio)
|
337 |
+
|
338 |
+
speaker_embedding = None
|
339 |
+
|
340 |
+
C.model_args['d_vector_file'] = TTS_SPEAKERS
|
341 |
+
C.model_args['use_speaker_encoder_as_loss'] = False
|
342 |
+
|
343 |
+
model = setup_model(C)
|
344 |
+
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
|
345 |
+
# print(model.language_manager.num_languages, model.embedded_language_dim)
|
346 |
+
# print(model.emb_l)
|
347 |
+
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
|
348 |
+
# remove speaker encoder
|
349 |
+
model_weights = cp['model'].copy()
|
350 |
+
for key in list(model_weights.keys()):
|
351 |
+
if "speaker_encoder" in key:
|
352 |
+
del model_weights[key]
|
353 |
+
|
354 |
+
model.load_state_dict(model_weights)
|
355 |
+
|
356 |
+
model.eval()
|
357 |
+
|
358 |
+
if USE_CUDA:
|
359 |
+
model = model.cuda()
|
360 |
+
|
361 |
+
# synthesize voice
|
362 |
+
use_griffin_lim = False
|
363 |
+
|
364 |
+
# Paths definition
|
365 |
+
|
366 |
+
CONFIG_SE_PATH = "config_se.json"
|
367 |
+
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
|
368 |
+
|
369 |
+
# Load the Speaker encoder
|
370 |
+
|
371 |
+
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
|
372 |
+
|
373 |
+
# Define helper function
|
374 |
+
|
375 |
+
def compute_spec(ref_file):
|
376 |
+
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
|
377 |
+
spec = ap.spectrogram(y)
|
378 |
+
spec = torch.FloatTensor(spec).unsqueeze(0)
|
379 |
+
return spec
|
380 |
+
|
381 |
+
|
382 |
+
def voice_conversion(ta, ra, da):
|
383 |
+
|
384 |
+
target_audio = 'target.wav'
|
385 |
+
reference_audio = 'reference.wav'
|
386 |
+
driving_audio = 'driving.wav'
|
387 |
+
|
388 |
+
write(target_audio, ta[0], ta[1])
|
389 |
+
write(reference_audio, ra[0], ra[1])
|
390 |
+
write(driving_audio, da[0], da[1])
|
391 |
+
|
392 |
+
# !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
|
393 |
+
# !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
|
394 |
+
# !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f
|
395 |
+
|
396 |
+
files = [target_audio, reference_audio, driving_audio]
|
397 |
+
|
398 |
+
for file in files:
|
399 |
+
subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])
|
400 |
+
|
401 |
+
# ta_ = read(target_audio)
|
402 |
+
|
403 |
+
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
|
404 |
+
target_emb = torch.FloatTensor(target_emb).unsqueeze(0)
|
405 |
+
|
406 |
+
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
|
407 |
+
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)
|
408 |
+
|
409 |
+
# Convert the voice
|
410 |
+
|
411 |
+
driving_spec = compute_spec(driving_audio)
|
412 |
+
y_lengths = torch.tensor([driving_spec.size(-1)])
|
413 |
+
if USE_CUDA:
|
414 |
+
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
|
415 |
+
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
|
416 |
+
else:
|
417 |
+
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
|
418 |
+
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()
|
419 |
+
|
420 |
+
# print("Reference Audio after decoder:")
|
421 |
+
# IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))
|
422 |
+
|
423 |
+
return (ap.sample_rate, ref_wav_voc)
|
424 |
+
|
425 |
+
|
426 |
+
while run_server:
|
427 |
+
print(f'Launching {APPTITLE} Server')
|
428 |
+
|
429 |
+
# Create Gradio Blocks
|
430 |
+
|
431 |
+
with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui:
|
432 |
+
with gr.Row():
|
433 |
+
with gr.Column():
|
434 |
+
gr.Markdown(f"### [{APPTITLE}](https://github.com/C0untFloyd/bark-gui)")
|
435 |
+
with gr.Column():
|
436 |
+
gr.HTML(create_version_html(), elem_id="versions")
|
437 |
+
|
438 |
+
with gr.Tab("TTS"):
|
439 |
+
with gr.Row():
|
440 |
+
with gr.Column():
|
441 |
+
placeholder = "Enter text here."
|
442 |
+
input_text = gr.Textbox(label="Input Text", lines=4, placeholder=placeholder)
|
443 |
+
with gr.Column():
|
444 |
+
seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1)
|
445 |
+
convert_to_ssml_button = gr.Button("Convert Text to SSML")
|
446 |
+
with gr.Row():
|
447 |
+
with gr.Column():
|
448 |
+
examples = [
|
449 |
+
"Special meanings: [laughter] [laughs] [sighs] [music] [gasps] [clears throat] MAN: WOMAN:",
|
450 |
+
"♪ Never gonna make you cry, never gonna say goodbye, never gonna tell a lie and hurt you ♪",
|
451 |
+
"And now — a picture of a larch [laughter]",
|
452 |
+
"""
|
453 |
+
WOMAN: I would like an oatmilk latte please.
|
454 |
+
MAN: Wow, that's expensive!
|
455 |
+
""",
|
456 |
+
"""<?xml version="1.0"?>
|
457 |
+
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis"
|
458 |
+
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
459 |
+
xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
|
460 |
+
http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
|
461 |
+
xml:lang="en-US">
|
462 |
+
<voice name="en_speaker_9">Look at that drunk guy!</voice>
|
463 |
+
<voice name="en_speaker_3">Who is he?</voice>
|
464 |
+
<voice name="en_speaker_9">WOMAN: [clears throat] 10 years ago, he proposed me and I rejected him.</voice>
|
465 |
+
<voice name="en_speaker_3">Oh my God [laughs] he is still celebrating</voice>
|
466 |
+
</speak>"""
|
467 |
+
]
|
468 |
+
examples = gr.Examples(examples=examples, inputs=input_text)
|
469 |
+
|
470 |
+
with gr.Row():
|
471 |
+
with gr.Column():
|
472 |
+
gr.Markdown("[Voice Prompt Library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)")
|
473 |
+
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice")
|
474 |
+
with gr.Column():
|
475 |
+
text_temp = gr.Slider(0.1, 1.0, value=0.6, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative")
|
476 |
+
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative")
|
477 |
+
|
478 |
+
with gr.Row():
|
479 |
+
with gr.Column():
|
480 |
+
quick_gen_checkbox = gr.Checkbox(label="Quick Generation", value=True)
|
481 |
+
settings_checkboxes = ["Use last generation as history", "Save generation as Voice"]
|
482 |
+
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False)
|
483 |
+
with gr.Column():
|
484 |
+
eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability")
|
485 |
+
|
486 |
+
with gr.Row():
|
487 |
+
with gr.Column():
|
488 |
+
tts_create_button = gr.Button("Generate")
|
489 |
+
with gr.Column():
|
490 |
+
hidden_checkbox = gr.Checkbox(visible=False)
|
491 |
+
button_stop_generation = gr.Button("Stop generation")
|
492 |
+
with gr.Row():
|
493 |
+
output_audio = gr.Audio(label="Generated Audio")
|
494 |
+
|
495 |
+
with gr.Row():
|
496 |
+
inp1 = gr.Audio(label='Target Speaker - Reference Clip')
|
497 |
+
inp2 = output_audio
|
498 |
+
inp3 = output_audio
|
499 |
+
btn = gr.Button("Generate")
|
500 |
+
out1 = gr.Audio(label='Target Speaker - Converted Clip')
|
501 |
+
btn.click(voice_conversion, [inp1, inp2, inp3], [out1])
|
502 |
+
|
503 |
+
|
504 |
+
|
505 |
+
with gr.Tab("Clone Voice"):
|
506 |
+
input_audio_filename = gr.Audio(label="Input audio.wav", source="upload", type="filepath")
|
507 |
+
transcription_text = gr.Textbox(label="Transcription Text", lines=1, placeholder="Enter Text of your Audio Sample here...")
|
508 |
+
initialname = "./bark/assets/prompts/custom/MeMyselfAndI"
|
509 |
+
output_voice = gr.Textbox(label="Filename of trained Voice", lines=1, placeholder=initialname, value=initialname)
|
510 |
+
clone_voice_button = gr.Button("Create Voice")
|
511 |
+
dummy = gr.Text(label="Progress")
|
512 |
+
|
513 |
+
with gr.Tab("Settings"):
|
514 |
+
with gr.Row():
|
515 |
+
themes = gr.Dropdown(available_themes, label="Theme", info="Change needs complete restart", value=settings.selected_theme)
|
516 |
+
with gr.Row():
|
517 |
+
input_server_name = gr.Textbox(label="Server Name", lines=1, info="Leave blank to run locally", value=settings.server_name)
|
518 |
+
input_server_port = gr.Number(label="Server Port", precision=0, info="Leave at 0 to use default", value=settings.server_port)
|
519 |
+
share_checkbox = gr.Checkbox(label="Public Server", value=settings.server_share)
|
520 |
+
with gr.Row():
|
521 |
+
input_desired_len = gr.Slider(100, 150, value=settings.input_text_desired_length, label="Desired Input Text Length", info="Ideal length to split input sentences")
|
522 |
+
input_max_len = gr.Slider(150, 256, value=settings.input_text_max_length, label="Max Input Text Length", info="Maximum Input Text Length")
|
523 |
+
with gr.Row():
|
524 |
+
input_silence_break = gr.Slider(1, 1000, value=settings.silence_sentence, label="Sentence Pause Time (ms)", info="Silence between sentences in milliseconds")
|
525 |
+
input_silence_speakers = gr.Slider(1, 5000, value=settings.silence_speakers, label="Speaker Pause Time (ms)", info="Silence between different speakers in milliseconds")
|
526 |
+
|
527 |
+
with gr.Row():
|
528 |
+
button_apply_settings = gr.Button("Apply Settings")
|
529 |
+
button_apply_restart = gr.Button("Restart Server")
|
530 |
+
button_delete_files = gr.Button("Clear output folder")
|
531 |
+
|
532 |
+
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings)
|
533 |
+
convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text)
|
534 |
+
gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent],outputs=output_audio)
|
535 |
+
button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click])
|
536 |
+
# Javascript hack to display modal confirmation dialog
|
537 |
+
js = "(x) => confirm('Are you sure? This will remove all files from output folder')"
|
538 |
+
button_delete_files.click(None, None, hidden_checkbox, _js=js)
|
539 |
+
hidden_checkbox.change(delete_output_files, [hidden_checkbox], [hidden_checkbox])
|
540 |
+
clone_voice_button.click(clone_voice, inputs=[input_audio_filename, transcription_text, output_voice], outputs=dummy)
|
541 |
+
button_apply_settings.click(apply_settings, inputs=[themes, input_server_name, input_server_port, share_checkbox, input_desired_len, input_max_len, input_silence_break, input_silence_speakers])
|
542 |
+
button_apply_restart.click(restart)
|
543 |
+
restart_server = False
|
544 |
+
try:
|
545 |
+
barkgui.queue().launch(show_error=True)
|
546 |
+
except:
|
547 |
+
restart_server = True
|
548 |
+
run_server = False
|
549 |
+
try:
|
550 |
+
while restart_server == False:
|
551 |
+
time.sleep(1.0)
|
552 |
+
except (KeyboardInterrupt, OSError):
|
553 |
+
print("Keyboard interruption in main thread... closing server.")
|
554 |
+
run_server = False
|
555 |
+
barkgui.close()
|
bark/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .api import generate_audio, text_to_semantic, semantic_to_waveform, save_as_prompt
|
2 |
+
from .generation import SAMPLE_RATE, preload_models
|
bark/api.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from .generation import codec_decode, generate_coarse, generate_fine, generate_text_semantic
|
6 |
+
|
7 |
+
|
8 |
+
def generate_with_settings(text_prompt, semantic_temp=0.6, eos_p=0.2, coarse_temp=0.7, fine_temp=0.5, voice_name=None, output_full=False):
|
9 |
+
|
10 |
+
# generation with more control
|
11 |
+
x_semantic = generate_text_semantic(
|
12 |
+
text_prompt,
|
13 |
+
history_prompt=voice_name,
|
14 |
+
temp=semantic_temp,
|
15 |
+
min_eos_p = eos_p,
|
16 |
+
use_kv_caching=True
|
17 |
+
)
|
18 |
+
|
19 |
+
x_coarse_gen = generate_coarse(
|
20 |
+
x_semantic,
|
21 |
+
history_prompt=voice_name,
|
22 |
+
temp=coarse_temp,
|
23 |
+
use_kv_caching=True
|
24 |
+
)
|
25 |
+
x_fine_gen = generate_fine(
|
26 |
+
x_coarse_gen,
|
27 |
+
history_prompt=voice_name,
|
28 |
+
temp=fine_temp,
|
29 |
+
)
|
30 |
+
|
31 |
+
if output_full:
|
32 |
+
full_generation = {
|
33 |
+
'semantic_prompt': x_semantic,
|
34 |
+
'coarse_prompt': x_coarse_gen,
|
35 |
+
'fine_prompt': x_fine_gen
|
36 |
+
}
|
37 |
+
return full_generation, codec_decode(x_fine_gen)
|
38 |
+
return codec_decode(x_fine_gen)
|
39 |
+
|
40 |
+
|
41 |
+
def text_to_semantic(
|
42 |
+
text: str,
|
43 |
+
history_prompt: Optional[Union[Dict, str]] = None,
|
44 |
+
temp: float = 0.7,
|
45 |
+
silent: bool = False,
|
46 |
+
):
|
47 |
+
"""Generate semantic array from text.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
text: text to be turned into audio
|
51 |
+
history_prompt: history choice for audio cloning
|
52 |
+
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
53 |
+
silent: disable progress bar
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
numpy semantic array to be fed into `semantic_to_waveform`
|
57 |
+
"""
|
58 |
+
x_semantic = generate_text_semantic(
|
59 |
+
text,
|
60 |
+
history_prompt=history_prompt,
|
61 |
+
temp=temp,
|
62 |
+
silent=silent,
|
63 |
+
use_kv_caching=True
|
64 |
+
)
|
65 |
+
return x_semantic
|
66 |
+
|
67 |
+
|
68 |
+
def semantic_to_waveform(
|
69 |
+
semantic_tokens: np.ndarray,
|
70 |
+
history_prompt: Optional[Union[Dict, str]] = None,
|
71 |
+
temp: float = 0.7,
|
72 |
+
silent: bool = False,
|
73 |
+
output_full: bool = False,
|
74 |
+
):
|
75 |
+
"""Generate audio array from semantic input.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
semantic_tokens: semantic token output from `text_to_semantic`
|
79 |
+
history_prompt: history choice for audio cloning
|
80 |
+
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
81 |
+
silent: disable progress bar
|
82 |
+
output_full: return full generation to be used as a history prompt
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
numpy audio array at sample frequency 24khz
|
86 |
+
"""
|
87 |
+
coarse_tokens = generate_coarse(
|
88 |
+
semantic_tokens,
|
89 |
+
history_prompt=history_prompt,
|
90 |
+
temp=temp,
|
91 |
+
silent=silent,
|
92 |
+
use_kv_caching=True
|
93 |
+
)
|
94 |
+
fine_tokens = generate_fine(
|
95 |
+
coarse_tokens,
|
96 |
+
history_prompt=history_prompt,
|
97 |
+
temp=0.5,
|
98 |
+
)
|
99 |
+
audio_arr = codec_decode(fine_tokens)
|
100 |
+
if output_full:
|
101 |
+
full_generation = {
|
102 |
+
"semantic_prompt": semantic_tokens,
|
103 |
+
"coarse_prompt": coarse_tokens,
|
104 |
+
"fine_prompt": fine_tokens,
|
105 |
+
}
|
106 |
+
return full_generation, audio_arr
|
107 |
+
return audio_arr
|
108 |
+
|
109 |
+
|
110 |
+
def save_as_prompt(filepath, full_generation):
|
111 |
+
assert(filepath.endswith(".npz"))
|
112 |
+
assert(isinstance(full_generation, dict))
|
113 |
+
assert("semantic_prompt" in full_generation)
|
114 |
+
assert("coarse_prompt" in full_generation)
|
115 |
+
assert("fine_prompt" in full_generation)
|
116 |
+
np.savez(filepath, **full_generation)
|
117 |
+
|
118 |
+
|
119 |
+
def generate_audio(
|
120 |
+
text: str,
|
121 |
+
history_prompt: Optional[Union[Dict, str]] = None,
|
122 |
+
text_temp: float = 0.7,
|
123 |
+
waveform_temp: float = 0.7,
|
124 |
+
silent: bool = False,
|
125 |
+
output_full: bool = False,
|
126 |
+
):
|
127 |
+
"""Generate audio array from input text.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
text: text to be turned into audio
|
131 |
+
history_prompt: history choice for audio cloning
|
132 |
+
text_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
133 |
+
waveform_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
|
134 |
+
silent: disable progress bar
|
135 |
+
output_full: return full generation to be used as a history prompt
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
numpy audio array at sample frequency 24khz
|
139 |
+
"""
|
140 |
+
semantic_tokens = text_to_semantic(
|
141 |
+
text,
|
142 |
+
history_prompt=history_prompt,
|
143 |
+
temp=text_temp,
|
144 |
+
silent=silent,
|
145 |
+
)
|
146 |
+
out = semantic_to_waveform(
|
147 |
+
semantic_tokens,
|
148 |
+
history_prompt=history_prompt,
|
149 |
+
temp=waveform_temp,
|
150 |
+
silent=silent,
|
151 |
+
output_full=output_full,
|
152 |
+
)
|
153 |
+
if output_full:
|
154 |
+
full_generation, audio_arr = out
|
155 |
+
return full_generation, audio_arr
|
156 |
+
else:
|
157 |
+
audio_arr = out
|
158 |
+
return audio_arr
|
bark/assets/prompts/announcer.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26f2d1a9e3b6fe453cf5fc8191de26cbfae6276c5b0f7c376c6a0f3c35867f83
|
3 |
+
size 16794
|
bark/assets/prompts/en_speaker_0.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:932f40d879ba8659f1ca26319ba64ea3b0647b2050fe24313bf42b0dff1fe241
|
3 |
+
size 28100
|
bark/assets/prompts/en_speaker_1.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e7f18015e1ab9b6302ded1e28a971af5306a72f193bb6c411f1948a083c8578
|
3 |
+
size 25220
|
bark/assets/prompts/en_speaker_2.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d218990680ece5f2d4fc18ea4783b016b3ae353ec413eaee2058f2d57263c9b3
|
3 |
+
size 26236
|
bark/assets/prompts/en_speaker_3.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92c2e2a29145c83738e9b63f082fd1c873d9422468a155463cb27f814aeaea66
|
3 |
+
size 34980
|
bark/assets/prompts/en_speaker_4.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:992f91991a9a5359d72f00b09a11a550e71bb8ebfc0cfd877e39d7d41f98b714
|
3 |
+
size 23780
|
bark/assets/prompts/en_speaker_5.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18831c3f6014e4a2ff60ad5169b1fae06e28ed07f43f8a3616aafb84515091bf
|
3 |
+
size 24740
|
bark/assets/prompts/en_speaker_6.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fab38dc6b6bc9226bcc414f4c5a9524bc1b2441865a586153fb620127a8faa4e
|
3 |
+
size 25540
|
bark/assets/prompts/en_speaker_7.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f4c4eb33f5994be8de5cfd1744ebce13da1618a6da3a7d244514178c61ef7db
|
3 |
+
size 22716
|
bark/assets/prompts/en_speaker_8.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fc9f11b539588f51bbf78150a73e0365c49b2306bd72e5a22b28ef09c4fb15d
|
3 |
+
size 23300
|
bark/assets/prompts/en_speaker_9.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78b3ba32eb9aeb9ed34556856c40633ecc8332d1c3ae3c81e6f5015ac3eefbd5
|
3 |
+
size 30180
|
bark/assets/prompts/zh_speaker_0.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd7ac118a3e944b3f20c89f2446056a00850a630ee16318922acc6572ce80929
|
3 |
+
size 20636
|
bark/assets/prompts/zh_speaker_1.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0eacf5c862dfd3c5ac825f2ebb26f323e64309cb712e7e264cbd31c5bca3f038
|
3 |
+
size 19836
|
bark/assets/prompts/zh_speaker_2.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e324b47f8250e5798c314f395d4e049575e7ca369d0b6074e91c7bba70e9f26d
|
3 |
+
size 21060
|
bark/assets/prompts/zh_speaker_3.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98c476abc7bf634ffb2d71d363284e7bd8c8abd5e33ec5ca21d4aa5b15730d18
|
3 |
+
size 31300
|
bark/assets/prompts/zh_speaker_4.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fa8673a9895ad3302d13ac94193b5ad5da481f1cc276e6181fa895acaae133b
|
3 |
+
size 29964
|
bark/assets/prompts/zh_speaker_5.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:226edfe5fabc72eeb83a13e350599bc8babe5adc2264b3cdb661fd1258dc4044
|
3 |
+
size 17436
|
bark/assets/prompts/zh_speaker_6.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:285d51fbe81cc263636b5b487fbb6633e6f3cf92c53ca9ab8e6b7f55d4b4a31d
|
3 |
+
size 16900
|
bark/assets/prompts/zh_speaker_7.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0967cdb14ffa79895747b0d52df9f15bdad80d6c55b7630894345c9a7ec87c91
|
3 |
+
size 21060
|
bark/assets/prompts/zh_speaker_8.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c028f78530013f29ab8c0c1cf4fe2138106fbe5252951f5f36e0168056779549
|
3 |
+
size 19300
|
bark/assets/prompts/zh_speaker_9.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6265bb827008d7af8a45a8e057fe3e91efb347d56208180a9ed990ad54e4d75e
|
3 |
+
size 16156
|
bark/clonevoice.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bark.generation import load_codec_model, generate_text_semantic, grab_best_device
|
2 |
+
from encodec.utils import convert_audio
|
3 |
+
import torchaudio
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
import gradio
|
7 |
+
|
8 |
+
|
9 |
+
def clone_voice(audio_filepath, text, dest_filename, progress=gradio.Progress(track_tqdm=True)):
|
10 |
+
if len(text) < 1:
|
11 |
+
raise gradio.Error('No transcription text entered!')
|
12 |
+
|
13 |
+
use_gpu = not os.environ.get("BARK_FORCE_CPU", False)
|
14 |
+
progress(0, desc="Loading Codec")
|
15 |
+
model = load_codec_model(use_gpu=use_gpu)
|
16 |
+
progress(0.25, desc="Converting WAV")
|
17 |
+
|
18 |
+
# Load and pre-process the audio waveform
|
19 |
+
device = grab_best_device(use_gpu)
|
20 |
+
wav, sr = torchaudio.load(audio_filepath)
|
21 |
+
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
22 |
+
wav = wav.unsqueeze(0).to(device)
|
23 |
+
progress(0.5, desc="Extracting codes")
|
24 |
+
|
25 |
+
# Extract discrete codes from EnCodec
|
26 |
+
with torch.no_grad():
|
27 |
+
encoded_frames = model.encode(wav)
|
28 |
+
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() # [n_q, T]
|
29 |
+
|
30 |
+
# get seconds of audio
|
31 |
+
seconds = wav.shape[-1] / model.sample_rate
|
32 |
+
# generate semantic tokens
|
33 |
+
semantic_tokens = generate_text_semantic(text, max_gen_duration_s=seconds, top_k=50, top_p=.95, temp=0.7)
|
34 |
+
|
35 |
+
# move codes to cpu
|
36 |
+
codes = codes.cpu().numpy()
|
37 |
+
|
38 |
+
import numpy as np
|
39 |
+
output_path = dest_filename + '.npz'
|
40 |
+
np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens)
|
41 |
+
return "Finished"
|
bark/generation.py
ADDED
@@ -0,0 +1,865 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import gc
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import requests
|
6 |
+
import gc
|
7 |
+
import sys
|
8 |
+
|
9 |
+
from encodec import EncodecModel
|
10 |
+
import funcy
|
11 |
+
import logging
|
12 |
+
import numpy as np
|
13 |
+
from scipy.special import softmax
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import tqdm
|
17 |
+
from transformers import BertTokenizer
|
18 |
+
from huggingface_hub import hf_hub_download, hf_hub_url
|
19 |
+
|
20 |
+
from .model import GPTConfig, GPT
|
21 |
+
from .model_fine import FineGPT, FineGPTConfig
|
22 |
+
from .settings import initenv
|
23 |
+
|
24 |
+
initenv(sys.argv)
|
25 |
+
global_force_cpu = os.environ.get("BARK_FORCE_CPU", False)
|
26 |
+
if (
|
27 |
+
global_force_cpu != True and
|
28 |
+
torch.cuda.is_available() and
|
29 |
+
hasattr(torch.cuda, "amp") and
|
30 |
+
hasattr(torch.cuda.amp, "autocast") and
|
31 |
+
hasattr(torch.cuda, "is_bf16_supported") and
|
32 |
+
torch.cuda.is_bf16_supported()
|
33 |
+
):
|
34 |
+
autocast = funcy.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16)
|
35 |
+
else:
|
36 |
+
@contextlib.contextmanager
|
37 |
+
def autocast():
|
38 |
+
yield
|
39 |
+
|
40 |
+
|
41 |
+
# hold models in global scope to lazy load
|
42 |
+
global models
|
43 |
+
models = {}
|
44 |
+
|
45 |
+
global models_devices
|
46 |
+
models_devices = {}
|
47 |
+
|
48 |
+
|
49 |
+
CONTEXT_WINDOW_SIZE = 1024
|
50 |
+
|
51 |
+
SEMANTIC_RATE_HZ = 49.9
|
52 |
+
SEMANTIC_VOCAB_SIZE = 10_000
|
53 |
+
|
54 |
+
CODEBOOK_SIZE = 1024
|
55 |
+
N_COARSE_CODEBOOKS = 2
|
56 |
+
N_FINE_CODEBOOKS = 8
|
57 |
+
COARSE_RATE_HZ = 75
|
58 |
+
|
59 |
+
SAMPLE_RATE = 24_000
|
60 |
+
|
61 |
+
|
62 |
+
SUPPORTED_LANGS = [
|
63 |
+
("English", "en"),
|
64 |
+
("German", "de"),
|
65 |
+
("Spanish", "es"),
|
66 |
+
("French", "fr"),
|
67 |
+
("Hindi", "hi"),
|
68 |
+
("Italian", "it"),
|
69 |
+
("Japanese", "ja"),
|
70 |
+
("Korean", "ko"),
|
71 |
+
("Polish", "pl"),
|
72 |
+
("Portuguese", "pt"),
|
73 |
+
("Russian", "ru"),
|
74 |
+
("Turkish", "tr"),
|
75 |
+
("Chinese", "zh"),
|
76 |
+
]
|
77 |
+
|
78 |
+
ALLOWED_PROMPTS = {"announcer"}
|
79 |
+
for _, lang in SUPPORTED_LANGS:
|
80 |
+
for prefix in ("", f"v2{os.path.sep}"):
|
81 |
+
for n in range(10):
|
82 |
+
ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}")
|
83 |
+
|
84 |
+
|
85 |
+
logger = logging.getLogger(__name__)
|
86 |
+
|
87 |
+
|
88 |
+
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
|
89 |
+
|
90 |
+
|
91 |
+
#default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
|
92 |
+
#CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0")
|
93 |
+
#CACHE_DIR = os.path.join(os.getcwd(), "models"
|
94 |
+
CACHE_DIR = "./models"
|
95 |
+
|
96 |
+
|
97 |
+
def _cast_bool_env_var(s):
|
98 |
+
return s.lower() in ('true', '1', 't')
|
99 |
+
|
100 |
+
USE_SMALL_MODELS = _cast_bool_env_var(os.environ.get("SUNO_USE_SMALL_MODELS", "False"))
|
101 |
+
GLOBAL_ENABLE_MPS = _cast_bool_env_var(os.environ.get("SUNO_ENABLE_MPS", "False"))
|
102 |
+
OFFLOAD_CPU = _cast_bool_env_var(os.environ.get("SUNO_OFFLOAD_CPU", "False"))
|
103 |
+
|
104 |
+
REMOTE_MODEL_PATHS = {
|
105 |
+
"text_small": {
|
106 |
+
"repo_id": "suno/bark",
|
107 |
+
"file_name": "text.pt",
|
108 |
+
},
|
109 |
+
"coarse_small": {
|
110 |
+
"repo_id": "suno/bark",
|
111 |
+
"file_name": "coarse.pt",
|
112 |
+
},
|
113 |
+
"fine_small": {
|
114 |
+
"repo_id": "suno/bark",
|
115 |
+
"file_name": "fine.pt",
|
116 |
+
},
|
117 |
+
"text": {
|
118 |
+
"repo_id": "suno/bark",
|
119 |
+
"file_name": "text_2.pt",
|
120 |
+
},
|
121 |
+
"coarse": {
|
122 |
+
"repo_id": "suno/bark",
|
123 |
+
"file_name": "coarse_2.pt",
|
124 |
+
},
|
125 |
+
"fine": {
|
126 |
+
"repo_id": "suno/bark",
|
127 |
+
"file_name": "fine_2.pt",
|
128 |
+
},
|
129 |
+
}
|
130 |
+
|
131 |
+
|
132 |
+
if not hasattr(torch.nn.functional, 'scaled_dot_product_attention') and torch.cuda.is_available():
|
133 |
+
logger.warning(
|
134 |
+
"torch version does not support flash attention. You will get faster" +
|
135 |
+
" inference speed by upgrade torch to newest nightly version."
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
def grab_best_device(use_gpu=True):
|
140 |
+
if torch.cuda.device_count() > 0 and use_gpu:
|
141 |
+
device = "cuda"
|
142 |
+
elif torch.backends.mps.is_available() and use_gpu and GLOBAL_ENABLE_MPS:
|
143 |
+
device = "mps"
|
144 |
+
else:
|
145 |
+
device = "cpu"
|
146 |
+
return device
|
147 |
+
|
148 |
+
|
149 |
+
def _get_ckpt_path(model_type, use_small=False):
|
150 |
+
key = model_type
|
151 |
+
if use_small or USE_SMALL_MODELS:
|
152 |
+
key += "_small"
|
153 |
+
return os.path.join(CACHE_DIR, REMOTE_MODEL_PATHS[key]["file_name"])
|
154 |
+
|
155 |
+
"""
|
156 |
+
def _download(from_hf_path, file_name, destfilename):
|
157 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
158 |
+
hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR, local_dir_use_symlinks=False)
|
159 |
+
# Bug in original repo? Downloaded name differs from expected...
|
160 |
+
if not os.path.exists(destfilename):
|
161 |
+
localname = os.path.join(CACHE_DIR, file_name)
|
162 |
+
os.rename(localname, destfilename)
|
163 |
+
"""
|
164 |
+
def _download(from_hf_path, file_name):
|
165 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
166 |
+
hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR)
|
167 |
+
|
168 |
+
|
169 |
+
class InferenceContext:
|
170 |
+
def __init__(self, benchmark=False):
|
171 |
+
# we can't expect inputs to be the same length, so disable benchmarking by default
|
172 |
+
self._chosen_cudnn_benchmark = benchmark
|
173 |
+
self._cudnn_benchmark = None
|
174 |
+
|
175 |
+
def __enter__(self):
|
176 |
+
self._cudnn_benchmark = torch.backends.cudnn.benchmark
|
177 |
+
torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark
|
178 |
+
|
179 |
+
def __exit__(self, exc_type, exc_value, exc_traceback):
|
180 |
+
torch.backends.cudnn.benchmark = self._cudnn_benchmark
|
181 |
+
|
182 |
+
|
183 |
+
if torch.cuda.is_available():
|
184 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
185 |
+
torch.backends.cudnn.allow_tf32 = True
|
186 |
+
|
187 |
+
|
188 |
+
@contextlib.contextmanager
|
189 |
+
def _inference_mode():
|
190 |
+
with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():
|
191 |
+
yield
|
192 |
+
|
193 |
+
|
194 |
+
def _clear_cuda_cache():
|
195 |
+
if torch.cuda.is_available():
|
196 |
+
torch.cuda.empty_cache()
|
197 |
+
torch.cuda.synchronize()
|
198 |
+
|
199 |
+
|
200 |
+
def clean_models(model_key=None):
|
201 |
+
global models
|
202 |
+
model_keys = [model_key] if model_key is not None else models.keys()
|
203 |
+
for k in model_keys:
|
204 |
+
if k in models:
|
205 |
+
del models[k]
|
206 |
+
_clear_cuda_cache()
|
207 |
+
gc.collect()
|
208 |
+
|
209 |
+
|
210 |
+
def _load_model(ckpt_path, device, use_small=False, model_type="text"):
|
211 |
+
if model_type == "text":
|
212 |
+
ConfigClass = GPTConfig
|
213 |
+
ModelClass = GPT
|
214 |
+
elif model_type == "coarse":
|
215 |
+
ConfigClass = GPTConfig
|
216 |
+
ModelClass = GPT
|
217 |
+
elif model_type == "fine":
|
218 |
+
ConfigClass = FineGPTConfig
|
219 |
+
ModelClass = FineGPT
|
220 |
+
else:
|
221 |
+
raise NotImplementedError()
|
222 |
+
|
223 |
+
# Force-remove Models to allow running on >12Gb GPU
|
224 |
+
# CF: Probably not needed anymore
|
225 |
+
#global models
|
226 |
+
#models.clear()
|
227 |
+
#gc.collect()
|
228 |
+
#torch.cuda.empty_cache()
|
229 |
+
# to here...
|
230 |
+
|
231 |
+
model_key = f"{model_type}_small" if use_small or USE_SMALL_MODELS else model_type
|
232 |
+
model_info = REMOTE_MODEL_PATHS[model_key]
|
233 |
+
if not os.path.exists(ckpt_path):
|
234 |
+
logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.")
|
235 |
+
## added next two lines to make it super clear which model is being downloaded
|
236 |
+
remote_filename = hf_hub_url(model_info["repo_id"], model_info["file_name"])
|
237 |
+
print(f"Downloading {model_key} {model_info['repo_id']} remote model file {remote_filename} {model_info['file_name']} to {CACHE_DIR}")
|
238 |
+
_download(model_info["repo_id"], model_info["file_name"])
|
239 |
+
# add next line to make it super clear which model is being loaded
|
240 |
+
print(f"Loading {model_key} model from {ckpt_path} to {device}") # added
|
241 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
242 |
+
# this is a hack
|
243 |
+
model_args = checkpoint["model_args"]
|
244 |
+
if "input_vocab_size" not in model_args:
|
245 |
+
model_args["input_vocab_size"] = model_args["vocab_size"]
|
246 |
+
model_args["output_vocab_size"] = model_args["vocab_size"]
|
247 |
+
del model_args["vocab_size"]
|
248 |
+
gptconf = ConfigClass(**checkpoint["model_args"])
|
249 |
+
model = ModelClass(gptconf)
|
250 |
+
state_dict = checkpoint["model"]
|
251 |
+
# fixup checkpoint
|
252 |
+
unwanted_prefix = "_orig_mod."
|
253 |
+
for k, v in list(state_dict.items()):
|
254 |
+
if k.startswith(unwanted_prefix):
|
255 |
+
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
|
256 |
+
extra_keys = set(state_dict.keys()) - set(model.state_dict().keys())
|
257 |
+
extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")])
|
258 |
+
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
|
259 |
+
missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")])
|
260 |
+
if len(extra_keys) != 0:
|
261 |
+
raise ValueError(f"extra keys found: {extra_keys}")
|
262 |
+
if len(missing_keys) != 0:
|
263 |
+
raise ValueError(f"missing keys: {missing_keys}")
|
264 |
+
model.load_state_dict(state_dict, strict=False)
|
265 |
+
n_params = model.get_num_params()
|
266 |
+
val_loss = checkpoint["best_val_loss"].item()
|
267 |
+
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
|
268 |
+
model.eval()
|
269 |
+
model.to(device)
|
270 |
+
del checkpoint, state_dict
|
271 |
+
_clear_cuda_cache()
|
272 |
+
if model_type == "text":
|
273 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased")
|
274 |
+
return {
|
275 |
+
"model": model,
|
276 |
+
"tokenizer": tokenizer,
|
277 |
+
}
|
278 |
+
return model
|
279 |
+
|
280 |
+
|
281 |
+
def _load_codec_model(device):
|
282 |
+
model = EncodecModel.encodec_model_24khz()
|
283 |
+
model.set_target_bandwidth(6.0)
|
284 |
+
model.eval()
|
285 |
+
model.to(device)
|
286 |
+
_clear_cuda_cache()
|
287 |
+
return model
|
288 |
+
|
289 |
+
|
290 |
+
def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="text"):
|
291 |
+
_load_model_f = funcy.partial(_load_model, model_type=model_type, use_small=use_small)
|
292 |
+
if model_type not in ("text", "coarse", "fine"):
|
293 |
+
raise NotImplementedError()
|
294 |
+
global models
|
295 |
+
global models_devices
|
296 |
+
device = grab_best_device(use_gpu=use_gpu)
|
297 |
+
model_key = f"{model_type}"
|
298 |
+
if OFFLOAD_CPU:
|
299 |
+
models_devices[model_key] = device
|
300 |
+
device = "cpu"
|
301 |
+
if model_key not in models or force_reload:
|
302 |
+
ckpt_path = _get_ckpt_path(model_type, use_small=use_small)
|
303 |
+
clean_models(model_key=model_key)
|
304 |
+
model = _load_model_f(ckpt_path, device)
|
305 |
+
models[model_key] = model
|
306 |
+
if model_type == "text":
|
307 |
+
models[model_key]["model"].to(device)
|
308 |
+
else:
|
309 |
+
models[model_key].to(device)
|
310 |
+
return models[model_key]
|
311 |
+
|
312 |
+
|
313 |
+
def load_codec_model(use_gpu=True, force_reload=False):
|
314 |
+
global models
|
315 |
+
global models_devices
|
316 |
+
device = grab_best_device(use_gpu=use_gpu)
|
317 |
+
if device == "mps":
|
318 |
+
# encodec doesn't support mps
|
319 |
+
device = "cpu"
|
320 |
+
model_key = "codec"
|
321 |
+
if OFFLOAD_CPU:
|
322 |
+
models_devices[model_key] = device
|
323 |
+
device = "cpu"
|
324 |
+
if model_key not in models or force_reload:
|
325 |
+
clean_models(model_key=model_key)
|
326 |
+
model = _load_codec_model(device)
|
327 |
+
models[model_key] = model
|
328 |
+
models[model_key].to(device)
|
329 |
+
return models[model_key]
|
330 |
+
|
331 |
+
|
332 |
+
def preload_models(
|
333 |
+
text_use_gpu=True,
|
334 |
+
text_use_small=False,
|
335 |
+
coarse_use_gpu=True,
|
336 |
+
coarse_use_small=False,
|
337 |
+
fine_use_gpu=True,
|
338 |
+
fine_use_small=False,
|
339 |
+
codec_use_gpu=True,
|
340 |
+
force_reload=False
|
341 |
+
):
|
342 |
+
"""Load all the necessary models for the pipeline."""
|
343 |
+
if grab_best_device() == "cpu" and (
|
344 |
+
text_use_gpu or coarse_use_gpu or fine_use_gpu or codec_use_gpu
|
345 |
+
):
|
346 |
+
logger.warning("No GPU being used. Careful, inference might be very slow!")
|
347 |
+
_ = load_model(
|
348 |
+
model_type="text", use_gpu=text_use_gpu, use_small=text_use_small, force_reload=force_reload
|
349 |
+
)
|
350 |
+
_ = load_model(
|
351 |
+
model_type="coarse",
|
352 |
+
use_gpu=coarse_use_gpu,
|
353 |
+
use_small=coarse_use_small,
|
354 |
+
force_reload=force_reload,
|
355 |
+
)
|
356 |
+
_ = load_model(
|
357 |
+
model_type="fine", use_gpu=fine_use_gpu, use_small=fine_use_small, force_reload=force_reload
|
358 |
+
)
|
359 |
+
_ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload)
|
360 |
+
|
361 |
+
|
362 |
+
####
|
363 |
+
# Generation Functionality
|
364 |
+
####
|
365 |
+
|
366 |
+
|
367 |
+
def _tokenize(tokenizer, text):
|
368 |
+
return tokenizer.encode(text, add_special_tokens=False)
|
369 |
+
|
370 |
+
|
371 |
+
def _detokenize(tokenizer, enc_text):
|
372 |
+
return tokenizer.decode(enc_text)
|
373 |
+
|
374 |
+
|
375 |
+
def _normalize_whitespace(text):
|
376 |
+
return re.sub(r"\s+", " ", text).strip()
|
377 |
+
|
378 |
+
|
379 |
+
TEXT_ENCODING_OFFSET = 10_048
|
380 |
+
SEMANTIC_PAD_TOKEN = 10_000
|
381 |
+
TEXT_PAD_TOKEN = 129_595
|
382 |
+
SEMANTIC_INFER_TOKEN = 129_599
|
383 |
+
|
384 |
+
|
385 |
+
def _load_history_prompt(history_prompt_input):
|
386 |
+
if isinstance(history_prompt_input, str) and history_prompt_input.endswith(".npz"):
|
387 |
+
history_prompt = np.load(history_prompt_input)
|
388 |
+
elif isinstance(history_prompt_input, str):
|
389 |
+
# make sure this works on non-ubuntu
|
390 |
+
history_prompt_input = os.path.join(*history_prompt_input.split("/"))
|
391 |
+
# if history_prompt_input not in ALLOWED_PROMPTS:
|
392 |
+
# raise ValueError("history prompt not found")
|
393 |
+
history_prompt = np.load(
|
394 |
+
os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt_input}.npz")
|
395 |
+
)
|
396 |
+
elif isinstance(history_prompt_input, dict):
|
397 |
+
assert("semantic_prompt" in history_prompt_input)
|
398 |
+
assert("coarse_prompt" in history_prompt_input)
|
399 |
+
assert("fine_prompt" in history_prompt_input)
|
400 |
+
history_prompt = history_prompt_input
|
401 |
+
else:
|
402 |
+
raise ValueError("history prompt format unrecognized")
|
403 |
+
return history_prompt
|
404 |
+
|
405 |
+
|
406 |
+
def generate_text_semantic(
|
407 |
+
text,
|
408 |
+
history_prompt=None,
|
409 |
+
temp=0.7,
|
410 |
+
top_k=None,
|
411 |
+
top_p=None,
|
412 |
+
silent=False,
|
413 |
+
min_eos_p=0.2,
|
414 |
+
max_gen_duration_s=None,
|
415 |
+
allow_early_stop=True,
|
416 |
+
use_kv_caching=False,
|
417 |
+
):
|
418 |
+
"""Generate semantic tokens from text."""
|
419 |
+
assert isinstance(text, str)
|
420 |
+
text = _normalize_whitespace(text)
|
421 |
+
assert len(text.strip()) > 0
|
422 |
+
if history_prompt is not None:
|
423 |
+
history_prompt = _load_history_prompt(history_prompt)
|
424 |
+
semantic_history = history_prompt["semantic_prompt"]
|
425 |
+
assert (
|
426 |
+
isinstance(semantic_history, np.ndarray)
|
427 |
+
and len(semantic_history.shape) == 1
|
428 |
+
and len(semantic_history) > 0
|
429 |
+
and semantic_history.min() >= 0
|
430 |
+
and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
|
431 |
+
)
|
432 |
+
else:
|
433 |
+
semantic_history = None
|
434 |
+
# load models if not yet exist
|
435 |
+
global models
|
436 |
+
global models_devices
|
437 |
+
if "text" not in models:
|
438 |
+
preload_models()
|
439 |
+
model_container = models["text"]
|
440 |
+
model = model_container["model"]
|
441 |
+
tokenizer = model_container["tokenizer"]
|
442 |
+
encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET
|
443 |
+
if OFFLOAD_CPU:
|
444 |
+
model.to(models_devices["text"])
|
445 |
+
device = next(model.parameters()).device
|
446 |
+
if len(encoded_text) > 256:
|
447 |
+
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1)
|
448 |
+
logger.warning(f"warning, text too long, lopping of last {p}%")
|
449 |
+
encoded_text = encoded_text[:256]
|
450 |
+
encoded_text = np.pad(
|
451 |
+
encoded_text,
|
452 |
+
(0, 256 - len(encoded_text)),
|
453 |
+
constant_values=TEXT_PAD_TOKEN,
|
454 |
+
mode="constant",
|
455 |
+
)
|
456 |
+
if semantic_history is not None:
|
457 |
+
semantic_history = semantic_history.astype(np.int64)
|
458 |
+
# lop off if history is too long, pad if needed
|
459 |
+
semantic_history = semantic_history[-256:]
|
460 |
+
semantic_history = np.pad(
|
461 |
+
semantic_history,
|
462 |
+
(0, 256 - len(semantic_history)),
|
463 |
+
constant_values=SEMANTIC_PAD_TOKEN,
|
464 |
+
mode="constant",
|
465 |
+
)
|
466 |
+
else:
|
467 |
+
semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256)
|
468 |
+
x = torch.from_numpy(
|
469 |
+
np.hstack([
|
470 |
+
encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN])
|
471 |
+
]).astype(np.int64)
|
472 |
+
)[None]
|
473 |
+
assert x.shape[1] == 256 + 256 + 1
|
474 |
+
with _inference_mode():
|
475 |
+
x = x.to(device)
|
476 |
+
n_tot_steps = 768
|
477 |
+
# custom tqdm updates since we don't know when eos will occur
|
478 |
+
pbar = tqdm.tqdm(disable=silent, total=100)
|
479 |
+
pbar_state = 0
|
480 |
+
tot_generated_duration_s = 0
|
481 |
+
kv_cache = None
|
482 |
+
for n in range(n_tot_steps):
|
483 |
+
if use_kv_caching and kv_cache is not None:
|
484 |
+
x_input = x[:, [-1]]
|
485 |
+
else:
|
486 |
+
x_input = x
|
487 |
+
logits, kv_cache = model(
|
488 |
+
x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache
|
489 |
+
)
|
490 |
+
relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE]
|
491 |
+
if allow_early_stop:
|
492 |
+
relevant_logits = torch.hstack(
|
493 |
+
(relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos
|
494 |
+
)
|
495 |
+
if top_p is not None:
|
496 |
+
# faster to convert to numpy
|
497 |
+
logits_device = relevant_logits.device
|
498 |
+
logits_dtype = relevant_logits.type()
|
499 |
+
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
|
500 |
+
sorted_indices = np.argsort(relevant_logits)[::-1]
|
501 |
+
sorted_logits = relevant_logits[sorted_indices]
|
502 |
+
cumulative_probs = np.cumsum(softmax(sorted_logits))
|
503 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
504 |
+
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
|
505 |
+
sorted_indices_to_remove[0] = False
|
506 |
+
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
|
507 |
+
relevant_logits = torch.from_numpy(relevant_logits)
|
508 |
+
relevant_logits = relevant_logits.to(logits_device).type(logits_dtype)
|
509 |
+
if top_k is not None:
|
510 |
+
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
|
511 |
+
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
|
512 |
+
probs = F.softmax(relevant_logits / temp, dim=-1)
|
513 |
+
# multinomial bugged on mps: shuttle to cpu if necessary
|
514 |
+
inf_device = probs.device
|
515 |
+
if probs.device.type == "mps":
|
516 |
+
probs = probs.to("cpu")
|
517 |
+
item_next = torch.multinomial(probs, num_samples=1)
|
518 |
+
probs = probs.to(inf_device)
|
519 |
+
item_next = item_next.to(inf_device)
|
520 |
+
if allow_early_stop and (
|
521 |
+
item_next == SEMANTIC_VOCAB_SIZE
|
522 |
+
or (min_eos_p is not None and probs[-1] >= min_eos_p)
|
523 |
+
):
|
524 |
+
# eos found, so break
|
525 |
+
pbar.update(100 - pbar_state)
|
526 |
+
break
|
527 |
+
x = torch.cat((x, item_next[None]), dim=1)
|
528 |
+
tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ
|
529 |
+
if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s:
|
530 |
+
pbar.update(100 - pbar_state)
|
531 |
+
break
|
532 |
+
if n == n_tot_steps - 1:
|
533 |
+
pbar.update(100 - pbar_state)
|
534 |
+
break
|
535 |
+
del logits, relevant_logits, probs, item_next
|
536 |
+
req_pbar_state = np.min([100, int(round(100 * n / n_tot_steps))])
|
537 |
+
if req_pbar_state > pbar_state:
|
538 |
+
pbar.update(req_pbar_state - pbar_state)
|
539 |
+
pbar_state = req_pbar_state
|
540 |
+
pbar.close()
|
541 |
+
out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :]
|
542 |
+
if OFFLOAD_CPU:
|
543 |
+
model.to("cpu")
|
544 |
+
assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE)
|
545 |
+
_clear_cuda_cache()
|
546 |
+
return out
|
547 |
+
|
548 |
+
|
549 |
+
def _flatten_codebooks(arr, offset_size=CODEBOOK_SIZE):
|
550 |
+
assert len(arr.shape) == 2
|
551 |
+
arr = arr.copy()
|
552 |
+
if offset_size is not None:
|
553 |
+
for n in range(1, arr.shape[0]):
|
554 |
+
arr[n, :] += offset_size * n
|
555 |
+
flat_arr = arr.ravel("F")
|
556 |
+
return flat_arr
|
557 |
+
|
558 |
+
|
559 |
+
COARSE_SEMANTIC_PAD_TOKEN = 12_048
|
560 |
+
COARSE_INFER_TOKEN = 12_050
|
561 |
+
|
562 |
+
|
563 |
+
def generate_coarse(
|
564 |
+
x_semantic,
|
565 |
+
history_prompt=None,
|
566 |
+
temp=0.7,
|
567 |
+
top_k=None,
|
568 |
+
top_p=None,
|
569 |
+
silent=False,
|
570 |
+
max_coarse_history=630, # min 60 (faster), max 630 (more context)
|
571 |
+
sliding_window_len=60,
|
572 |
+
use_kv_caching=False,
|
573 |
+
):
|
574 |
+
"""Generate coarse audio codes from semantic tokens."""
|
575 |
+
assert (
|
576 |
+
isinstance(x_semantic, np.ndarray)
|
577 |
+
and len(x_semantic.shape) == 1
|
578 |
+
and len(x_semantic) > 0
|
579 |
+
and x_semantic.min() >= 0
|
580 |
+
and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1
|
581 |
+
)
|
582 |
+
assert 60 <= max_coarse_history <= 630
|
583 |
+
assert max_coarse_history + sliding_window_len <= 1024 - 256
|
584 |
+
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS
|
585 |
+
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
|
586 |
+
if history_prompt is not None:
|
587 |
+
history_prompt = _load_history_prompt(history_prompt)
|
588 |
+
x_semantic_history = history_prompt["semantic_prompt"]
|
589 |
+
x_coarse_history = history_prompt["coarse_prompt"]
|
590 |
+
assert (
|
591 |
+
isinstance(x_semantic_history, np.ndarray)
|
592 |
+
and len(x_semantic_history.shape) == 1
|
593 |
+
and len(x_semantic_history) > 0
|
594 |
+
and x_semantic_history.min() >= 0
|
595 |
+
and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
|
596 |
+
and isinstance(x_coarse_history, np.ndarray)
|
597 |
+
and len(x_coarse_history.shape) == 2
|
598 |
+
and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS
|
599 |
+
and x_coarse_history.shape[-1] >= 0
|
600 |
+
and x_coarse_history.min() >= 0
|
601 |
+
and x_coarse_history.max() <= CODEBOOK_SIZE - 1
|
602 |
+
and (
|
603 |
+
round(x_coarse_history.shape[-1] / len(x_semantic_history), 1)
|
604 |
+
== round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1)
|
605 |
+
)
|
606 |
+
)
|
607 |
+
x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE
|
608 |
+
# trim histories correctly
|
609 |
+
n_semantic_hist_provided = np.min(
|
610 |
+
[
|
611 |
+
max_semantic_history,
|
612 |
+
len(x_semantic_history) - len(x_semantic_history) % 2,
|
613 |
+
int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)),
|
614 |
+
]
|
615 |
+
)
|
616 |
+
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
|
617 |
+
x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32)
|
618 |
+
x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32)
|
619 |
+
# TODO: bit of a hack for time alignment (sounds better)
|
620 |
+
x_coarse_history = x_coarse_history[:-2]
|
621 |
+
else:
|
622 |
+
x_semantic_history = np.array([], dtype=np.int32)
|
623 |
+
x_coarse_history = np.array([], dtype=np.int32)
|
624 |
+
# load models if not yet exist
|
625 |
+
global models
|
626 |
+
global models_devices
|
627 |
+
if "coarse" not in models:
|
628 |
+
preload_models()
|
629 |
+
model = models["coarse"]
|
630 |
+
if OFFLOAD_CPU:
|
631 |
+
model.to(models_devices["coarse"])
|
632 |
+
device = next(model.parameters()).device
|
633 |
+
# start loop
|
634 |
+
n_steps = int(
|
635 |
+
round(
|
636 |
+
np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS)
|
637 |
+
* N_COARSE_CODEBOOKS
|
638 |
+
)
|
639 |
+
)
|
640 |
+
assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0
|
641 |
+
x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32)
|
642 |
+
x_coarse = x_coarse_history.astype(np.int32)
|
643 |
+
base_semantic_idx = len(x_semantic_history)
|
644 |
+
with _inference_mode():
|
645 |
+
x_semantic_in = torch.from_numpy(x_semantic)[None].to(device)
|
646 |
+
x_coarse_in = torch.from_numpy(x_coarse)[None].to(device)
|
647 |
+
n_window_steps = int(np.ceil(n_steps / sliding_window_len))
|
648 |
+
n_step = 0
|
649 |
+
for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent):
|
650 |
+
semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio))
|
651 |
+
# pad from right side
|
652 |
+
x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :]
|
653 |
+
x_in = x_in[:, :256]
|
654 |
+
x_in = F.pad(
|
655 |
+
x_in,
|
656 |
+
(0, 256 - x_in.shape[-1]),
|
657 |
+
"constant",
|
658 |
+
COARSE_SEMANTIC_PAD_TOKEN,
|
659 |
+
)
|
660 |
+
x_in = torch.hstack(
|
661 |
+
[
|
662 |
+
x_in,
|
663 |
+
torch.tensor([COARSE_INFER_TOKEN])[None].to(device),
|
664 |
+
x_coarse_in[:, -max_coarse_history:],
|
665 |
+
]
|
666 |
+
)
|
667 |
+
kv_cache = None
|
668 |
+
for _ in range(sliding_window_len):
|
669 |
+
if n_step >= n_steps:
|
670 |
+
continue
|
671 |
+
is_major_step = n_step % N_COARSE_CODEBOOKS == 0
|
672 |
+
|
673 |
+
if use_kv_caching and kv_cache is not None:
|
674 |
+
x_input = x_in[:, [-1]]
|
675 |
+
else:
|
676 |
+
x_input = x_in
|
677 |
+
|
678 |
+
logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache)
|
679 |
+
logit_start_idx = (
|
680 |
+
SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE
|
681 |
+
)
|
682 |
+
logit_end_idx = (
|
683 |
+
SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE
|
684 |
+
)
|
685 |
+
relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx]
|
686 |
+
if top_p is not None:
|
687 |
+
# faster to convert to numpy
|
688 |
+
logits_device = relevant_logits.device
|
689 |
+
logits_dtype = relevant_logits.type()
|
690 |
+
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
|
691 |
+
sorted_indices = np.argsort(relevant_logits)[::-1]
|
692 |
+
sorted_logits = relevant_logits[sorted_indices]
|
693 |
+
cumulative_probs = np.cumsum(softmax(sorted_logits))
|
694 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
695 |
+
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
|
696 |
+
sorted_indices_to_remove[0] = False
|
697 |
+
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
|
698 |
+
relevant_logits = torch.from_numpy(relevant_logits)
|
699 |
+
relevant_logits = relevant_logits.to(logits_device).type(logits_dtype)
|
700 |
+
if top_k is not None:
|
701 |
+
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
|
702 |
+
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
|
703 |
+
probs = F.softmax(relevant_logits / temp, dim=-1)
|
704 |
+
# multinomial bugged on mps: shuttle to cpu if necessary
|
705 |
+
inf_device = probs.device
|
706 |
+
if probs.device.type == "mps":
|
707 |
+
probs = probs.to("cpu")
|
708 |
+
item_next = torch.multinomial(probs, num_samples=1)
|
709 |
+
probs = probs.to(inf_device)
|
710 |
+
item_next = item_next.to(inf_device)
|
711 |
+
item_next += logit_start_idx
|
712 |
+
x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1)
|
713 |
+
x_in = torch.cat((x_in, item_next[None]), dim=1)
|
714 |
+
del logits, relevant_logits, probs, item_next
|
715 |
+
n_step += 1
|
716 |
+
del x_in
|
717 |
+
del x_semantic_in
|
718 |
+
if OFFLOAD_CPU:
|
719 |
+
model.to("cpu")
|
720 |
+
gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :]
|
721 |
+
del x_coarse_in
|
722 |
+
assert len(gen_coarse_arr) == n_steps
|
723 |
+
gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE
|
724 |
+
for n in range(1, N_COARSE_CODEBOOKS):
|
725 |
+
gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE
|
726 |
+
_clear_cuda_cache()
|
727 |
+
return gen_coarse_audio_arr
|
728 |
+
|
729 |
+
|
730 |
+
def generate_fine(
|
731 |
+
x_coarse_gen,
|
732 |
+
history_prompt=None,
|
733 |
+
temp=0.5,
|
734 |
+
silent=True,
|
735 |
+
):
|
736 |
+
"""Generate full audio codes from coarse audio codes."""
|
737 |
+
assert (
|
738 |
+
isinstance(x_coarse_gen, np.ndarray)
|
739 |
+
and len(x_coarse_gen.shape) == 2
|
740 |
+
and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1
|
741 |
+
and x_coarse_gen.shape[1] > 0
|
742 |
+
and x_coarse_gen.min() >= 0
|
743 |
+
and x_coarse_gen.max() <= CODEBOOK_SIZE - 1
|
744 |
+
)
|
745 |
+
if history_prompt is not None:
|
746 |
+
history_prompt = _load_history_prompt(history_prompt)
|
747 |
+
x_fine_history = history_prompt["fine_prompt"]
|
748 |
+
assert (
|
749 |
+
isinstance(x_fine_history, np.ndarray)
|
750 |
+
and len(x_fine_history.shape) == 2
|
751 |
+
and x_fine_history.shape[0] == N_FINE_CODEBOOKS
|
752 |
+
and x_fine_history.shape[1] >= 0
|
753 |
+
and x_fine_history.min() >= 0
|
754 |
+
and x_fine_history.max() <= CODEBOOK_SIZE - 1
|
755 |
+
)
|
756 |
+
else:
|
757 |
+
x_fine_history = None
|
758 |
+
n_coarse = x_coarse_gen.shape[0]
|
759 |
+
# load models if not yet exist
|
760 |
+
global models
|
761 |
+
global models_devices
|
762 |
+
if "fine" not in models:
|
763 |
+
preload_models()
|
764 |
+
model = models["fine"]
|
765 |
+
if OFFLOAD_CPU:
|
766 |
+
model.to(models_devices["fine"])
|
767 |
+
device = next(model.parameters()).device
|
768 |
+
# make input arr
|
769 |
+
in_arr = np.vstack(
|
770 |
+
[
|
771 |
+
x_coarse_gen,
|
772 |
+
np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1]))
|
773 |
+
+ CODEBOOK_SIZE, # padding
|
774 |
+
]
|
775 |
+
).astype(np.int32)
|
776 |
+
# prepend history if available (max 512)
|
777 |
+
if x_fine_history is not None:
|
778 |
+
x_fine_history = x_fine_history.astype(np.int32)
|
779 |
+
in_arr = np.hstack(
|
780 |
+
[
|
781 |
+
x_fine_history[:, -512:].astype(np.int32),
|
782 |
+
in_arr,
|
783 |
+
]
|
784 |
+
)
|
785 |
+
n_history = x_fine_history[:, -512:].shape[1]
|
786 |
+
else:
|
787 |
+
n_history = 0
|
788 |
+
n_remove_from_end = 0
|
789 |
+
# need to pad if too short (since non-causal model)
|
790 |
+
if in_arr.shape[1] < 1024:
|
791 |
+
n_remove_from_end = 1024 - in_arr.shape[1]
|
792 |
+
in_arr = np.hstack(
|
793 |
+
[
|
794 |
+
in_arr,
|
795 |
+
np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE,
|
796 |
+
]
|
797 |
+
)
|
798 |
+
# we can be lazy about fractional loop and just keep overwriting codebooks
|
799 |
+
n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1
|
800 |
+
with _inference_mode():
|
801 |
+
in_arr = torch.tensor(in_arr.T).to(device)
|
802 |
+
for n in tqdm.tqdm(range(n_loops), disable=silent):
|
803 |
+
start_idx = np.min([n * 512, in_arr.shape[0] - 1024])
|
804 |
+
start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512])
|
805 |
+
rel_start_fill_idx = start_fill_idx - start_idx
|
806 |
+
in_buffer = in_arr[start_idx : start_idx + 1024, :][None]
|
807 |
+
for nn in range(n_coarse, N_FINE_CODEBOOKS):
|
808 |
+
logits = model(nn, in_buffer)
|
809 |
+
if temp is None:
|
810 |
+
relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE]
|
811 |
+
codebook_preds = torch.argmax(relevant_logits, -1)
|
812 |
+
else:
|
813 |
+
relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp
|
814 |
+
probs = F.softmax(relevant_logits, dim=-1)
|
815 |
+
# multinomial bugged on mps: shuttle to cpu if necessary
|
816 |
+
inf_device = probs.device
|
817 |
+
if probs.device.type == "mps":
|
818 |
+
probs = probs.to("cpu")
|
819 |
+
codebook_preds = torch.hstack(
|
820 |
+
[
|
821 |
+
torch.multinomial(probs[nnn], num_samples=1).to(inf_device)
|
822 |
+
for nnn in range(rel_start_fill_idx, 1024)
|
823 |
+
]
|
824 |
+
)
|
825 |
+
in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds
|
826 |
+
del logits, codebook_preds
|
827 |
+
# transfer over info into model_in and convert to numpy
|
828 |
+
for nn in range(n_coarse, N_FINE_CODEBOOKS):
|
829 |
+
in_arr[
|
830 |
+
start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn
|
831 |
+
] = in_buffer[0, rel_start_fill_idx:, nn]
|
832 |
+
del in_buffer
|
833 |
+
gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T
|
834 |
+
del in_arr
|
835 |
+
if OFFLOAD_CPU:
|
836 |
+
model.to("cpu")
|
837 |
+
gen_fine_arr = gen_fine_arr[:, n_history:]
|
838 |
+
if n_remove_from_end > 0:
|
839 |
+
gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end]
|
840 |
+
assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1]
|
841 |
+
_clear_cuda_cache()
|
842 |
+
return gen_fine_arr
|
843 |
+
|
844 |
+
|
845 |
+
def codec_decode(fine_tokens):
|
846 |
+
"""Turn quantized audio codes into audio array using encodec."""
|
847 |
+
# load models if not yet exist
|
848 |
+
global models
|
849 |
+
global models_devices
|
850 |
+
if "codec" not in models:
|
851 |
+
preload_models()
|
852 |
+
model = models["codec"]
|
853 |
+
if OFFLOAD_CPU:
|
854 |
+
model.to(models_devices["codec"])
|
855 |
+
device = next(model.parameters()).device
|
856 |
+
arr = torch.from_numpy(fine_tokens)[None]
|
857 |
+
arr = arr.to(device)
|
858 |
+
arr = arr.transpose(0, 1)
|
859 |
+
emb = model.quantizer.decode(arr)
|
860 |
+
out = model.decoder(emb)
|
861 |
+
audio_arr = out.detach().cpu().numpy().squeeze()
|
862 |
+
del arr, emb, out
|
863 |
+
if OFFLOAD_CPU:
|
864 |
+
model.to("cpu")
|
865 |
+
return audio_arr
|
bark/model.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Much of this code is adapted from Andrej Karpathy's NanoGPT
|
3 |
+
(https://github.com/karpathy/nanoGPT)
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
from dataclasses import dataclass
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
class LayerNorm(nn.Module):
|
13 |
+
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
14 |
+
|
15 |
+
def __init__(self, ndim, bias):
|
16 |
+
super().__init__()
|
17 |
+
self.weight = nn.Parameter(torch.ones(ndim))
|
18 |
+
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
19 |
+
|
20 |
+
def forward(self, input):
|
21 |
+
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
22 |
+
|
23 |
+
class CausalSelfAttention(nn.Module):
|
24 |
+
|
25 |
+
def __init__(self, config):
|
26 |
+
super().__init__()
|
27 |
+
assert config.n_embd % config.n_head == 0
|
28 |
+
# key, query, value projections for all heads, but in a batch
|
29 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
30 |
+
# output projection
|
31 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
32 |
+
# regularization
|
33 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
34 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
35 |
+
self.n_head = config.n_head
|
36 |
+
self.n_embd = config.n_embd
|
37 |
+
self.dropout = config.dropout
|
38 |
+
# flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary
|
39 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
40 |
+
if not self.flash:
|
41 |
+
# print("WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0")
|
42 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
43 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
44 |
+
.view(1, 1, config.block_size, config.block_size))
|
45 |
+
|
46 |
+
def forward(self, x, past_kv=None, use_cache=False):
|
47 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
48 |
+
|
49 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
50 |
+
q, k ,v = self.c_attn(x).split(self.n_embd, dim=2)
|
51 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
52 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
53 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
54 |
+
|
55 |
+
if past_kv is not None:
|
56 |
+
past_key = past_kv[0]
|
57 |
+
past_value = past_kv[1]
|
58 |
+
k = torch.cat((past_key, k), dim=-2)
|
59 |
+
v = torch.cat((past_value, v), dim=-2)
|
60 |
+
|
61 |
+
FULL_T = k.shape[-2]
|
62 |
+
|
63 |
+
if use_cache is True:
|
64 |
+
present = (k, v)
|
65 |
+
else:
|
66 |
+
present = None
|
67 |
+
|
68 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
69 |
+
if self.flash:
|
70 |
+
# efficient attention using Flash Attention CUDA kernels
|
71 |
+
if past_kv is not None:
|
72 |
+
# When `past_kv` is provided, we're doing incremental decoding and `q.shape[2] == 1`: q only contains
|
73 |
+
# the query for the last token. scaled_dot_product_attention interprets this as the first token in the
|
74 |
+
# sequence, so if is_causal=True it will mask out all attention from it. This is not what we want, so
|
75 |
+
# to work around this we set is_causal=False.
|
76 |
+
is_causal = False
|
77 |
+
else:
|
78 |
+
is_causal = True
|
79 |
+
|
80 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout, is_causal=is_causal)
|
81 |
+
else:
|
82 |
+
# manual implementation of attention
|
83 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
84 |
+
att = att.masked_fill(self.bias[:,:,FULL_T-T:FULL_T,:FULL_T] == 0, float('-inf'))
|
85 |
+
att = F.softmax(att, dim=-1)
|
86 |
+
att = self.attn_dropout(att)
|
87 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
88 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
89 |
+
|
90 |
+
# output projection
|
91 |
+
y = self.resid_dropout(self.c_proj(y))
|
92 |
+
return (y, present)
|
93 |
+
|
94 |
+
class MLP(nn.Module):
|
95 |
+
|
96 |
+
def __init__(self, config):
|
97 |
+
super().__init__()
|
98 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
99 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
100 |
+
self.dropout = nn.Dropout(config.dropout)
|
101 |
+
self.gelu = nn.GELU()
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
x = self.c_fc(x)
|
105 |
+
x = self.gelu(x)
|
106 |
+
x = self.c_proj(x)
|
107 |
+
x = self.dropout(x)
|
108 |
+
return x
|
109 |
+
|
110 |
+
class Block(nn.Module):
|
111 |
+
|
112 |
+
def __init__(self, config, layer_idx):
|
113 |
+
super().__init__()
|
114 |
+
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
|
115 |
+
self.attn = CausalSelfAttention(config)
|
116 |
+
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
|
117 |
+
self.mlp = MLP(config)
|
118 |
+
self.layer_idx = layer_idx
|
119 |
+
|
120 |
+
def forward(self, x, past_kv=None, use_cache=False):
|
121 |
+
attn_output, prev_kvs = self.attn(self.ln_1(x), past_kv=past_kv, use_cache=use_cache)
|
122 |
+
x = x + attn_output
|
123 |
+
x = x + self.mlp(self.ln_2(x))
|
124 |
+
return (x, prev_kvs)
|
125 |
+
|
126 |
+
@dataclass
|
127 |
+
class GPTConfig:
|
128 |
+
block_size: int = 1024
|
129 |
+
input_vocab_size: int = 10_048
|
130 |
+
output_vocab_size: int = 10_048
|
131 |
+
n_layer: int = 12
|
132 |
+
n_head: int = 12
|
133 |
+
n_embd: int = 768
|
134 |
+
dropout: float = 0.0
|
135 |
+
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
136 |
+
|
137 |
+
class GPT(nn.Module):
|
138 |
+
|
139 |
+
def __init__(self, config):
|
140 |
+
super().__init__()
|
141 |
+
assert config.input_vocab_size is not None
|
142 |
+
assert config.output_vocab_size is not None
|
143 |
+
assert config.block_size is not None
|
144 |
+
self.config = config
|
145 |
+
|
146 |
+
self.transformer = nn.ModuleDict(dict(
|
147 |
+
wte = nn.Embedding(config.input_vocab_size, config.n_embd),
|
148 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
149 |
+
drop = nn.Dropout(config.dropout),
|
150 |
+
h = nn.ModuleList([Block(config, idx) for idx in range(config.n_layer)]),
|
151 |
+
ln_f = LayerNorm(config.n_embd, bias=config.bias),
|
152 |
+
))
|
153 |
+
self.lm_head = nn.Linear(config.n_embd, config.output_vocab_size, bias=False)
|
154 |
+
|
155 |
+
def get_num_params(self, non_embedding=True):
|
156 |
+
"""
|
157 |
+
Return the number of parameters in the model.
|
158 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
159 |
+
The token embeddings would too, except due to the parameter sharing these
|
160 |
+
params are actually used as weights in the final layer, so we include them.
|
161 |
+
"""
|
162 |
+
n_params = sum(p.numel() for p in self.parameters())
|
163 |
+
if non_embedding:
|
164 |
+
n_params -= self.transformer.wte.weight.numel()
|
165 |
+
n_params -= self.transformer.wpe.weight.numel()
|
166 |
+
return n_params
|
167 |
+
|
168 |
+
def forward(self, idx, merge_context=False, past_kv=None, position_ids=None, use_cache=False):
|
169 |
+
device = idx.device
|
170 |
+
b, t = idx.size()
|
171 |
+
if past_kv is not None:
|
172 |
+
assert t == 1
|
173 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
174 |
+
else:
|
175 |
+
if merge_context:
|
176 |
+
assert(idx.shape[1] >= 256+256+1)
|
177 |
+
t = idx.shape[1] - 256
|
178 |
+
else:
|
179 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
180 |
+
|
181 |
+
# forward the GPT model itself
|
182 |
+
if merge_context:
|
183 |
+
tok_emb = torch.cat([
|
184 |
+
self.transformer.wte(idx[:,:256]) + self.transformer.wte(idx[:,256:256+256]),
|
185 |
+
self.transformer.wte(idx[:,256+256:])
|
186 |
+
], dim=1)
|
187 |
+
else:
|
188 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
189 |
+
|
190 |
+
if past_kv is None:
|
191 |
+
past_length = 0
|
192 |
+
past_kv = tuple([None] * len(self.transformer.h))
|
193 |
+
else:
|
194 |
+
past_length = past_kv[0][0].size(-2)
|
195 |
+
|
196 |
+
if position_ids is None:
|
197 |
+
position_ids = torch.arange(past_length, t + past_length, dtype=torch.long, device=device)
|
198 |
+
position_ids = position_ids.unsqueeze(0) # shape (1, t)
|
199 |
+
assert position_ids.shape == (1, t)
|
200 |
+
|
201 |
+
pos_emb = self.transformer.wpe(position_ids) # position embeddings of shape (1, t, n_embd)
|
202 |
+
|
203 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
204 |
+
|
205 |
+
new_kv = () if use_cache else None
|
206 |
+
|
207 |
+
for i, (block, past_layer_kv) in enumerate(zip(self.transformer.h, past_kv)):
|
208 |
+
x, kv = block(x, past_kv=past_layer_kv, use_cache=use_cache)
|
209 |
+
|
210 |
+
if use_cache:
|
211 |
+
new_kv = new_kv + (kv,)
|
212 |
+
|
213 |
+
x = self.transformer.ln_f(x)
|
214 |
+
|
215 |
+
# inference-time mini-optimization: only forward the lm_head on the very last position
|
216 |
+
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
217 |
+
|
218 |
+
return (logits, new_kv)
|
bark/model_fine.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Much of this code is adapted from Andrej Karpathy's NanoGPT
|
3 |
+
(https://github.com/karpathy/nanoGPT)
|
4 |
+
"""
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
from .model import GPT, GPTConfig, MLP
|
13 |
+
|
14 |
+
|
15 |
+
class NonCausalSelfAttention(nn.Module):
|
16 |
+
def __init__(self, config):
|
17 |
+
super().__init__()
|
18 |
+
assert config.n_embd % config.n_head == 0
|
19 |
+
# key, query, value projections for all heads, but in a batch
|
20 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
21 |
+
# output projection
|
22 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
23 |
+
# regularization
|
24 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
25 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
26 |
+
self.n_head = config.n_head
|
27 |
+
self.n_embd = config.n_embd
|
28 |
+
self.dropout = config.dropout
|
29 |
+
# flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary
|
30 |
+
self.flash = (
|
31 |
+
hasattr(torch.nn.functional, "scaled_dot_product_attention") and self.dropout == 0.0
|
32 |
+
)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
36 |
+
|
37 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
38 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
39 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
40 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
41 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
42 |
+
|
43 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
44 |
+
if self.flash:
|
45 |
+
# efficient attention using Flash Attention CUDA kernels
|
46 |
+
y = torch.nn.functional.scaled_dot_product_attention(
|
47 |
+
q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=False
|
48 |
+
)
|
49 |
+
else:
|
50 |
+
# manual implementation of attention
|
51 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
52 |
+
att = F.softmax(att, dim=-1)
|
53 |
+
att = self.attn_dropout(att)
|
54 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
55 |
+
y = (
|
56 |
+
y.transpose(1, 2).contiguous().view(B, T, C)
|
57 |
+
) # re-assemble all head outputs side by side
|
58 |
+
|
59 |
+
# output projection
|
60 |
+
y = self.resid_dropout(self.c_proj(y))
|
61 |
+
return y
|
62 |
+
|
63 |
+
|
64 |
+
class FineBlock(nn.Module):
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__()
|
67 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
68 |
+
self.attn = NonCausalSelfAttention(config)
|
69 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.mlp = MLP(config)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = x + self.attn(self.ln_1(x))
|
74 |
+
x = x + self.mlp(self.ln_2(x))
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class FineGPT(GPT):
|
79 |
+
def __init__(self, config):
|
80 |
+
super().__init__(config)
|
81 |
+
del self.lm_head
|
82 |
+
self.config = config
|
83 |
+
self.n_codes_total = config.n_codes_total
|
84 |
+
self.transformer = nn.ModuleDict(
|
85 |
+
dict(
|
86 |
+
wtes=nn.ModuleList(
|
87 |
+
[
|
88 |
+
nn.Embedding(config.input_vocab_size, config.n_embd)
|
89 |
+
for _ in range(config.n_codes_total)
|
90 |
+
]
|
91 |
+
),
|
92 |
+
wpe=nn.Embedding(config.block_size, config.n_embd),
|
93 |
+
drop=nn.Dropout(config.dropout),
|
94 |
+
h=nn.ModuleList([FineBlock(config) for _ in range(config.n_layer)]),
|
95 |
+
ln_f=nn.LayerNorm(config.n_embd),
|
96 |
+
)
|
97 |
+
)
|
98 |
+
self.lm_heads = nn.ModuleList(
|
99 |
+
[
|
100 |
+
nn.Linear(config.n_embd, config.output_vocab_size, bias=False)
|
101 |
+
for _ in range(config.n_codes_given, self.n_codes_total)
|
102 |
+
]
|
103 |
+
)
|
104 |
+
for i in range(self.n_codes_total - config.n_codes_given):
|
105 |
+
self.transformer.wtes[i + 1].weight = self.lm_heads[i].weight
|
106 |
+
|
107 |
+
def forward(self, pred_idx, idx):
|
108 |
+
device = idx.device
|
109 |
+
b, t, codes = idx.size()
|
110 |
+
assert (
|
111 |
+
t <= self.config.block_size
|
112 |
+
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
113 |
+
assert pred_idx > 0, "cannot predict 0th codebook"
|
114 |
+
assert codes == self.n_codes_total, (b, t, codes)
|
115 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
|
116 |
+
|
117 |
+
# forward the GPT model itself
|
118 |
+
tok_embs = [
|
119 |
+
wte(idx[:, :, i]).unsqueeze(-1) for i, wte in enumerate(self.transformer.wtes)
|
120 |
+
] # token embeddings of shape (b, t, n_embd)
|
121 |
+
tok_emb = torch.cat(tok_embs, dim=-1)
|
122 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd)
|
123 |
+
x = tok_emb[:, :, :, : pred_idx + 1].sum(dim=-1)
|
124 |
+
x = self.transformer.drop(x + pos_emb)
|
125 |
+
for block in self.transformer.h:
|
126 |
+
x = block(x)
|
127 |
+
x = self.transformer.ln_f(x)
|
128 |
+
logits = self.lm_heads[pred_idx - self.config.n_codes_given](x)
|
129 |
+
return logits
|
130 |
+
|
131 |
+
def get_num_params(self, non_embedding=True):
|
132 |
+
"""
|
133 |
+
Return the number of parameters in the model.
|
134 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
135 |
+
The token embeddings would too, except due to the parameter sharing these
|
136 |
+
params are actually used as weights in the final layer, so we include them.
|
137 |
+
"""
|
138 |
+
n_params = sum(p.numel() for p in self.parameters())
|
139 |
+
if non_embedding:
|
140 |
+
for wte in self.transformer.wtes:
|
141 |
+
n_params -= wte.weight.numel()
|
142 |
+
n_params -= self.transformer.wpe.weight.numel()
|
143 |
+
return n_params
|
144 |
+
|
145 |
+
|
146 |
+
@dataclass
|
147 |
+
class FineGPTConfig(GPTConfig):
|
148 |
+
n_codes_total: int = 8
|
149 |
+
n_codes_given: int = 1
|
bark/settings.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
def initenv(args):
|
4 |
+
os.environ['SUNO_USE_SMALL_MODELS'] = str("-smallmodels" in args)
|
5 |
+
os.environ['BARK_FORCE_CPU'] = str("-forcecpu" in args)
|
6 |
+
os.environ['SUNO_ENABLE_MPS'] = str("-enablemps" in args)
|
7 |
+
os.environ['SUNO_OFFLOAD_CPU'] = str("-offloadcpu" in args)
|
best_model.pth.tar
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:017bfd8907c80bb5857d65d0223f0e4e4b9d699ef52e2a853d9cc7eb7e308cf0
|
3 |
+
size 379957289
|
config.json
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "vits",
|
3 |
+
"run_name": "vits_tts-portuguese",
|
4 |
+
"run_description": "",
|
5 |
+
"epochs": 1000,
|
6 |
+
"batch_size": 52,
|
7 |
+
"eval_batch_size": 52,
|
8 |
+
"mixed_precision": false,
|
9 |
+
"scheduler_after_epoch": true,
|
10 |
+
"run_eval": true,
|
11 |
+
"test_delay_epochs": -1,
|
12 |
+
"print_eval": true,
|
13 |
+
"dashboard_logger": "tensorboard",
|
14 |
+
"print_step": 25,
|
15 |
+
"plot_step": 100,
|
16 |
+
"model_param_stats": false,
|
17 |
+
"project_name": null,
|
18 |
+
"log_model_step": 10000,
|
19 |
+
"wandb_entity": null,
|
20 |
+
"save_step": 10000,
|
21 |
+
"checkpoint": true,
|
22 |
+
"keep_all_best": false,
|
23 |
+
"keep_after": 10000,
|
24 |
+
"num_loader_workers": 4,
|
25 |
+
"num_eval_loader_workers": 4,
|
26 |
+
"use_noise_augment": false,
|
27 |
+
"use_language_weighted_sampler": true,
|
28 |
+
"output_path": "../checkpoints/VITS-multilingual/VITS_fixes/new/new-SE/use_noise_aument_false/xlarge-ZS-PT-VCTK/pt-en+LibriTTS-fr/speaker_encoder_as_loss_9_alpha/mixed-p-false-bug-SDP-fixed/",
|
29 |
+
"distributed_backend": "nccl",
|
30 |
+
"distributed_url": "tcp://localhost:54321",
|
31 |
+
"audio": {
|
32 |
+
"fft_size": 1024,
|
33 |
+
"win_length": 1024,
|
34 |
+
"hop_length": 256,
|
35 |
+
"frame_shift_ms": null,
|
36 |
+
"frame_length_ms": null,
|
37 |
+
"stft_pad_mode": "reflect",
|
38 |
+
"sample_rate": 16000,
|
39 |
+
"resample": false,
|
40 |
+
"preemphasis": 0.0,
|
41 |
+
"ref_level_db": 20,
|
42 |
+
"do_sound_norm": false,
|
43 |
+
"log_func": "np.log",
|
44 |
+
"do_trim_silence": true,
|
45 |
+
"trim_db": 45,
|
46 |
+
"power": 1.5,
|
47 |
+
"griffin_lim_iters": 60,
|
48 |
+
"num_mels": 80,
|
49 |
+
"mel_fmin": 0.0,
|
50 |
+
"mel_fmax": null,
|
51 |
+
"spec_gain": 1,
|
52 |
+
"do_amp_to_db_linear": false,
|
53 |
+
"do_amp_to_db_mel": true,
|
54 |
+
"signal_norm": false,
|
55 |
+
"min_level_db": -100,
|
56 |
+
"symmetric_norm": true,
|
57 |
+
"max_norm": 4.0,
|
58 |
+
"clip_norm": true,
|
59 |
+
"stats_path": null
|
60 |
+
},
|
61 |
+
"use_phonemes": false,
|
62 |
+
"use_espeak_phonemes": false,
|
63 |
+
"phoneme_language": "pt-br",
|
64 |
+
"compute_input_seq_cache": false,
|
65 |
+
"text_cleaner": "multilingual_cleaners",
|
66 |
+
"enable_eos_bos_chars": false,
|
67 |
+
"test_sentences_file": "",
|
68 |
+
"phoneme_cache_path": null,
|
69 |
+
"characters": {
|
70 |
+
"pad": "_",
|
71 |
+
"eos": "&",
|
72 |
+
"bos": "*",
|
73 |
+
"characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00af\u00b7\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e6\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u00ff\u0101\u0105\u0107\u0113\u0119\u011b\u012b\u0131\u0142\u0144\u014d\u0151\u0153\u015b\u016b\u0171\u017a\u017c\u01ce\u01d0\u01d2\u01d4\u0430\u0431\u0432\u0433\u0434\u0435\u0436\u0437\u0438\u0439\u043a\u043b\u043c\u043d\u043e\u043f\u0440\u0441\u0442\u0443\u0444\u0445\u0446\u0447\u0448\u0449\u044a\u044b\u044c\u044d\u044e\u044f\u0451\u0454\u0456\u0457\u0491\u2013!'(),-.:;? ",
|
74 |
+
"punctuations": "!'(),-.:;? ",
|
75 |
+
"phonemes": "iy\u0268\u0289\u026fu\u026a\u028f\u028ae\u00f8\u0258\u0259\u0275\u0264o\u025b\u0153\u025c\u025e\u028c\u0254\u00e6\u0250a\u0276\u0251\u0252\u1d7b\u0298\u0253\u01c0\u0257\u01c3\u0284\u01c2\u0260\u01c1\u029bpbtd\u0288\u0256c\u025fk\u0261q\u0262\u0294\u0274\u014b\u0272\u0273n\u0271m\u0299r\u0280\u2c71\u027e\u027d\u0278\u03b2fv\u03b8\u00f0sz\u0283\u0292\u0282\u0290\u00e7\u029dx\u0263\u03c7\u0281\u0127\u0295h\u0266\u026c\u026e\u028b\u0279\u027bj\u0270l\u026d\u028e\u029f\u02c8\u02cc\u02d0\u02d1\u028dw\u0265\u029c\u02a2\u02a1\u0255\u0291\u027a\u0267\u025a\u02de\u026b'\u0303' ",
|
76 |
+
"unique": true
|
77 |
+
},
|
78 |
+
"batch_group_size": 0,
|
79 |
+
"loss_masking": null,
|
80 |
+
"min_seq_len": 90,
|
81 |
+
"max_seq_len": 270,
|
82 |
+
"compute_f0": false,
|
83 |
+
"compute_linear_spec": true,
|
84 |
+
"add_blank": true,
|
85 |
+
"datasets": [
|
86 |
+
{
|
87 |
+
"name": "vctk",
|
88 |
+
"path": "../../datasets/VCTK-Corpus-removed-silence_16Khz/",
|
89 |
+
"meta_file_train": null,
|
90 |
+
"ununsed_speakers": [
|
91 |
+
"p225",
|
92 |
+
"p234",
|
93 |
+
"p238",
|
94 |
+
"p245",
|
95 |
+
"p248",
|
96 |
+
"p261",
|
97 |
+
"p294",
|
98 |
+
"p302",
|
99 |
+
"p326",
|
100 |
+
"p335",
|
101 |
+
"p347"
|
102 |
+
],
|
103 |
+
"language": "en",
|
104 |
+
"meta_file_val": null,
|
105 |
+
"meta_file_attn_mask": ""
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"name": "libri_tts",
|
109 |
+
"path": "../../datasets/LibriTTS/LibriTTS/dataset-preprocessed-clean-100-and-360/dataset-22k/",
|
110 |
+
"meta_file_train": "metadata_all.csv",
|
111 |
+
"ununsed_speakers": null,
|
112 |
+
"language": "en",
|
113 |
+
"meta_file_val": "dev-clean_500.csv",
|
114 |
+
"meta_file_attn_mask": ""
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"name": "brspeech",
|
118 |
+
"path": "../../datasets/TTS-Portuguese-Corpus_16khz/",
|
119 |
+
"meta_file_train": "train_TTS-Portuguese_Corpus_metadata.csv",
|
120 |
+
"ununsed_speakers": null,
|
121 |
+
"language": "pt-br",
|
122 |
+
"meta_file_val": "eval_TTS-Portuguese_Corpus_metadata.csv",
|
123 |
+
"meta_file_attn_mask": ""
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"name": "mailabs",
|
127 |
+
"path": "../../datasets/M-AILABS/fr_FR",
|
128 |
+
"meta_file_train": "",
|
129 |
+
"ununsed_speakers": null,
|
130 |
+
"language": "fr-fr",
|
131 |
+
"meta_file_val": null,
|
132 |
+
"meta_file_attn_mask": null
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"optimizer": "AdamW",
|
136 |
+
"optimizer_params": {
|
137 |
+
"betas": [
|
138 |
+
0.8,
|
139 |
+
0.99
|
140 |
+
],
|
141 |
+
"eps": 1e-09,
|
142 |
+
"weight_decay": 0.01
|
143 |
+
},
|
144 |
+
"lr_scheduler": "",
|
145 |
+
"lr_scheduler_params": null,
|
146 |
+
"test_sentences": [
|
147 |
+
[
|
148 |
+
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
149 |
+
"VCTK_p225",
|
150 |
+
null,
|
151 |
+
"en"
|
152 |
+
],
|
153 |
+
[
|
154 |
+
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
155 |
+
"ED",
|
156 |
+
null,
|
157 |
+
"en"
|
158 |
+
],
|
159 |
+
[
|
160 |
+
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
161 |
+
"bernard",
|
162 |
+
null,
|
163 |
+
"en"
|
164 |
+
],
|
165 |
+
[
|
166 |
+
"This cake is great. It's so delicious and moist.",
|
167 |
+
"VCTK_p234",
|
168 |
+
null,
|
169 |
+
"en"
|
170 |
+
],
|
171 |
+
[
|
172 |
+
"This cake is great. It's so delicious and moist.",
|
173 |
+
"ED",
|
174 |
+
null,
|
175 |
+
"en"
|
176 |
+
],
|
177 |
+
[
|
178 |
+
"This cake is great. It's so delicious and moist.",
|
179 |
+
"ezwa",
|
180 |
+
null,
|
181 |
+
"en"
|
182 |
+
],
|
183 |
+
[
|
184 |
+
"Hoje \u00e9 fundamental encontrar a raz\u00e3o da exist\u00eancia humana.",
|
185 |
+
"ED",
|
186 |
+
null,
|
187 |
+
"pt-br"
|
188 |
+
],
|
189 |
+
[
|
190 |
+
"Hoje \u00e9 fundamental encontrar a raz\u00e3o da exist\u00eancia humana.",
|
191 |
+
"VCTK_p238",
|
192 |
+
null,
|
193 |
+
"pt-br"
|
194 |
+
],
|
195 |
+
[
|
196 |
+
"Hoje \u00e9 fundamental encontrar a raz\u00e3o da exist\u00eancia humana.",
|
197 |
+
"gilles_g_le_blanc",
|
198 |
+
null,
|
199 |
+
"pt-br"
|
200 |
+
],
|
201 |
+
[
|
202 |
+
"Em muitas cidades a popula\u00e7\u00e3o est\u00e1 diminuindo.",
|
203 |
+
"ED",
|
204 |
+
null,
|
205 |
+
"pt-br"
|
206 |
+
],
|
207 |
+
[
|
208 |
+
"Em muitas cidades a popula\u00e7\u00e3o est\u00e1 diminuindo.",
|
209 |
+
"VCTK_p245",
|
210 |
+
null,
|
211 |
+
"pt-br"
|
212 |
+
],
|
213 |
+
[
|
214 |
+
"Em muitas cidades a popula\u00e7\u00e3o est\u00e1 diminuindo.",
|
215 |
+
"nadine_eckert_boulet",
|
216 |
+
null,
|
217 |
+
"pt-br"
|
218 |
+
],
|
219 |
+
[
|
220 |
+
"Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.",
|
221 |
+
"VCTK_p245",
|
222 |
+
null,
|
223 |
+
"fr-fr"
|
224 |
+
],
|
225 |
+
[
|
226 |
+
"Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.",
|
227 |
+
"ED",
|
228 |
+
null,
|
229 |
+
"fr-fr"
|
230 |
+
],
|
231 |
+
[
|
232 |
+
"Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.",
|
233 |
+
"ezwa",
|
234 |
+
null,
|
235 |
+
"fr-fr"
|
236 |
+
],
|
237 |
+
[
|
238 |
+
"Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.",
|
239 |
+
"bernard",
|
240 |
+
null,
|
241 |
+
"fr-fr"
|
242 |
+
],
|
243 |
+
[
|
244 |
+
"Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.",
|
245 |
+
"gilles_g_le_blanc",
|
246 |
+
null,
|
247 |
+
"fr-fr"
|
248 |
+
],
|
249 |
+
[
|
250 |
+
"Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.",
|
251 |
+
"nadine_eckert_boulet",
|
252 |
+
null,
|
253 |
+
"fr-fr"
|
254 |
+
],
|
255 |
+
[
|
256 |
+
"Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.",
|
257 |
+
"zeckou",
|
258 |
+
null,
|
259 |
+
"fr-fr"
|
260 |
+
]
|
261 |
+
],
|
262 |
+
"use_speaker_embedding": true,
|
263 |
+
"use_d_vector_file": true,
|
264 |
+
"d_vector_dim": 512,
|
265 |
+
"model_args": {
|
266 |
+
"num_chars": 165,
|
267 |
+
"out_channels": 513,
|
268 |
+
"spec_segment_size": 62,
|
269 |
+
"hidden_channels": 192,
|
270 |
+
"hidden_channels_ffn_text_encoder": 768,
|
271 |
+
"num_heads_text_encoder": 2,
|
272 |
+
"num_layers_text_encoder": 10,
|
273 |
+
"kernel_size_text_encoder": 3,
|
274 |
+
"dropout_p_text_encoder": 0.1,
|
275 |
+
"dropout_p_duration_predictor": 0.5,
|
276 |
+
"kernel_size_posterior_encoder": 5,
|
277 |
+
"dilation_rate_posterior_encoder": 1,
|
278 |
+
"num_layers_posterior_encoder": 16,
|
279 |
+
"kernel_size_flow": 5,
|
280 |
+
"dilation_rate_flow": 1,
|
281 |
+
"num_layers_flow": 4,
|
282 |
+
"resblock_type_decoder": 1,
|
283 |
+
"resblock_kernel_sizes_decoder": [
|
284 |
+
3,
|
285 |
+
7,
|
286 |
+
11
|
287 |
+
],
|
288 |
+
"resblock_dilation_sizes_decoder": [
|
289 |
+
[
|
290 |
+
1,
|
291 |
+
3,
|
292 |
+
5
|
293 |
+
],
|
294 |
+
[
|
295 |
+
1,
|
296 |
+
3,
|
297 |
+
5
|
298 |
+
],
|
299 |
+
[
|
300 |
+
1,
|
301 |
+
3,
|
302 |
+
5
|
303 |
+
]
|
304 |
+
],
|
305 |
+
"upsample_rates_decoder": [
|
306 |
+
8,
|
307 |
+
8,
|
308 |
+
2,
|
309 |
+
2
|
310 |
+
],
|
311 |
+
"upsample_initial_channel_decoder": 512,
|
312 |
+
"upsample_kernel_sizes_decoder": [
|
313 |
+
16,
|
314 |
+
16,
|
315 |
+
4,
|
316 |
+
4
|
317 |
+
],
|
318 |
+
"use_sdp": true,
|
319 |
+
"noise_scale": 1.0,
|
320 |
+
"inference_noise_scale": 0.667,
|
321 |
+
"length_scale": 1,
|
322 |
+
"noise_scale_dp": 1.0,
|
323 |
+
"inference_noise_scale_dp": 0.8,
|
324 |
+
"max_inference_len": null,
|
325 |
+
"init_discriminator": true,
|
326 |
+
"use_spectral_norm_disriminator": false,
|
327 |
+
"use_speaker_embedding": true,
|
328 |
+
"num_speakers": 1244,
|
329 |
+
"speakers_file": null,
|
330 |
+
"d_vector_file": "../speaker_embeddings/new-SE/VCTK-LibriTTS+TTS-PT+MAILABS-FR/speakers.json",
|
331 |
+
"speaker_embedding_channels": 512,
|
332 |
+
"use_d_vector_file": true,
|
333 |
+
"d_vector_dim": 512,
|
334 |
+
"detach_dp_input": true,
|
335 |
+
"use_language_embedding": true,
|
336 |
+
"embedded_language_dim": 4,
|
337 |
+
"num_languages": 3,
|
338 |
+
"use_speaker_encoder_as_loss": true,
|
339 |
+
"speaker_encoder_config_path": "../checkpoints/Speaker_Encoder/Resnet-original-paper/config.json",
|
340 |
+
"speaker_encoder_model_path": "../checkpoints/Speaker_Encoder/Resnet-original-paper/converted_checkpoint.pth.tar",
|
341 |
+
"fine_tuning_mode": 0,
|
342 |
+
"freeze_encoder": false,
|
343 |
+
"freeze_DP": false,
|
344 |
+
"freeze_PE": false,
|
345 |
+
"freeze_flow_decoder": false,
|
346 |
+
"freeze_waveform_decoder": false
|
347 |
+
},
|
348 |
+
"grad_clip": [
|
349 |
+
5.0,
|
350 |
+
5.0
|
351 |
+
],
|
352 |
+
"lr_gen": 0.0002,
|
353 |
+
"lr_disc": 0.0002,
|
354 |
+
"lr_scheduler_gen": "ExponentialLR",
|
355 |
+
"lr_scheduler_gen_params": {
|
356 |
+
"gamma": 0.999875,
|
357 |
+
"last_epoch": -1
|
358 |
+
},
|
359 |
+
"lr_scheduler_disc": "ExponentialLR",
|
360 |
+
"lr_scheduler_disc_params": {
|
361 |
+
"gamma": 0.999875,
|
362 |
+
"last_epoch": -1
|
363 |
+
},
|
364 |
+
"kl_loss_alpha": 1.0,
|
365 |
+
"disc_loss_alpha": 1.0,
|
366 |
+
"gen_loss_alpha": 1.0,
|
367 |
+
"feat_loss_alpha": 1.0,
|
368 |
+
"mel_loss_alpha": 45.0,
|
369 |
+
"dur_loss_alpha": 1.0,
|
370 |
+
"speaker_encoder_loss_alpha": 9.0,
|
371 |
+
"return_wav": true,
|
372 |
+
"r": 1
|
373 |
+
}
|
config.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input_text_desired_length: 110
|
2 |
+
input_text_max_length: 170
|
3 |
+
selected_theme: gradio/soft
|
4 |
+
server_name: ''
|
5 |
+
server_port: 0
|
6 |
+
server_share: false
|
7 |
+
silence_between_sentences: 250
|
8 |
+
silence_between_speakers: 500
|
config_se.json
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "speaker_encoder",
|
3 |
+
"run_name": "speaker_encoder",
|
4 |
+
"run_description": "resnet speaker encoder trained with commonvoice all languages dev and train, Voxceleb 1 dev and Voxceleb 2 dev",
|
5 |
+
"epochs": 100000,
|
6 |
+
"batch_size": null,
|
7 |
+
"eval_batch_size": null,
|
8 |
+
"mixed_precision": false,
|
9 |
+
"run_eval": true,
|
10 |
+
"test_delay_epochs": 0,
|
11 |
+
"print_eval": false,
|
12 |
+
"print_step": 50,
|
13 |
+
"tb_plot_step": 100,
|
14 |
+
"tb_model_param_stats": false,
|
15 |
+
"save_step": 1000,
|
16 |
+
"checkpoint": true,
|
17 |
+
"keep_all_best": false,
|
18 |
+
"keep_after": 10000,
|
19 |
+
"num_loader_workers": 8,
|
20 |
+
"num_val_loader_workers": 0,
|
21 |
+
"use_noise_augment": false,
|
22 |
+
"output_path": "../checkpoints/speaker_encoder/language_balanced/normalized/angleproto-4-samples-by-speakers/",
|
23 |
+
"distributed_backend": "nccl",
|
24 |
+
"distributed_url": "tcp://localhost:54321",
|
25 |
+
"audio": {
|
26 |
+
"fft_size": 512,
|
27 |
+
"win_length": 400,
|
28 |
+
"hop_length": 160,
|
29 |
+
"frame_shift_ms": null,
|
30 |
+
"frame_length_ms": null,
|
31 |
+
"stft_pad_mode": "reflect",
|
32 |
+
"sample_rate": 16000,
|
33 |
+
"resample": false,
|
34 |
+
"preemphasis": 0.97,
|
35 |
+
"ref_level_db": 20,
|
36 |
+
"do_sound_norm": false,
|
37 |
+
"do_trim_silence": false,
|
38 |
+
"trim_db": 60,
|
39 |
+
"power": 1.5,
|
40 |
+
"griffin_lim_iters": 60,
|
41 |
+
"num_mels": 64,
|
42 |
+
"mel_fmin": 0.0,
|
43 |
+
"mel_fmax": 8000.0,
|
44 |
+
"spec_gain": 20,
|
45 |
+
"signal_norm": false,
|
46 |
+
"min_level_db": -100,
|
47 |
+
"symmetric_norm": false,
|
48 |
+
"max_norm": 4.0,
|
49 |
+
"clip_norm": false,
|
50 |
+
"stats_path": null
|
51 |
+
},
|
52 |
+
"datasets": [
|
53 |
+
{
|
54 |
+
"name": "voxceleb2",
|
55 |
+
"path": "/workspace/scratch/ecasanova/datasets/VoxCeleb/vox2_dev_aac/",
|
56 |
+
"meta_file_train": null,
|
57 |
+
"ununsed_speakers": null,
|
58 |
+
"meta_file_val": null,
|
59 |
+
"meta_file_attn_mask": "",
|
60 |
+
"language": "voxceleb"
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"model_params": {
|
64 |
+
"model_name": "resnet",
|
65 |
+
"input_dim": 64,
|
66 |
+
"use_torch_spec": true,
|
67 |
+
"log_input": true,
|
68 |
+
"proj_dim": 512
|
69 |
+
},
|
70 |
+
"audio_augmentation": {
|
71 |
+
"p": 0.5,
|
72 |
+
"rir": {
|
73 |
+
"rir_path": "/workspace/store/ecasanova/ComParE/RIRS_NOISES/simulated_rirs/",
|
74 |
+
"conv_mode": "full"
|
75 |
+
},
|
76 |
+
"additive": {
|
77 |
+
"sounds_path": "/workspace/store/ecasanova/ComParE/musan/",
|
78 |
+
"speech": {
|
79 |
+
"min_snr_in_db": 13,
|
80 |
+
"max_snr_in_db": 20,
|
81 |
+
"min_num_noises": 1,
|
82 |
+
"max_num_noises": 1
|
83 |
+
},
|
84 |
+
"noise": {
|
85 |
+
"min_snr_in_db": 0,
|
86 |
+
"max_snr_in_db": 15,
|
87 |
+
"min_num_noises": 1,
|
88 |
+
"max_num_noises": 1
|
89 |
+
},
|
90 |
+
"music": {
|
91 |
+
"min_snr_in_db": 5,
|
92 |
+
"max_snr_in_db": 15,
|
93 |
+
"min_num_noises": 1,
|
94 |
+
"max_num_noises": 1
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"gaussian": {
|
98 |
+
"p": 0.0,
|
99 |
+
"min_amplitude": 0.0,
|
100 |
+
"max_amplitude": 1e-05
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"storage": {
|
104 |
+
"sample_from_storage_p": 0.5,
|
105 |
+
"storage_size": 40
|
106 |
+
},
|
107 |
+
"max_train_step": 1000000,
|
108 |
+
"loss": "angleproto",
|
109 |
+
"grad_clip": 3.0,
|
110 |
+
"lr": 0.0001,
|
111 |
+
"lr_decay": false,
|
112 |
+
"warmup_steps": 4000,
|
113 |
+
"wd": 1e-06,
|
114 |
+
"steps_plot_stats": 100,
|
115 |
+
"num_speakers_in_batch": 100,
|
116 |
+
"num_utters_per_speaker": 4,
|
117 |
+
"skip_speakers": true,
|
118 |
+
"voice_len": 2.0
|
119 |
+
}
|
id3tagging.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mutagen.wave import WAVE
|
2 |
+
from mutagen.id3._frames import *
|
3 |
+
|
4 |
+
def add_id3_tag(filename, text, speakername, seed):
|
5 |
+
audio = WAVE(filename)
|
6 |
+
if speakername == None:
|
7 |
+
speakername = "Unconditional"
|
8 |
+
|
9 |
+
# write id3 tag with text truncated to 60 chars, as a precaution...
|
10 |
+
audio["TIT2"] = TIT2(encoding=3, text=text[:60])
|
11 |
+
audio["TPE1"] = TPE1(encoding=3, text=f"Voice {speakername} using Seed={seed}")
|
12 |
+
audio["TPUB"] = TPUB(encoding=3, text="Bark by Suno AI")
|
13 |
+
audio["COMMENT"] = COMM(encoding=3, text="Generated with Bark GUI - Text-Prompted Generative Audio Model. Visit https://github.com/C0untFloyd/bark-gui")
|
14 |
+
audio.save()
|
language_ids.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"en": 0,
|
3 |
+
"fr-fr": 1,
|
4 |
+
"pt-br": 2
|
5 |
+
}
|
parseinput.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import xml.etree.ElementTree as ET
|
3 |
+
from xml.sax import saxutils
|
4 |
+
#import nltk
|
5 |
+
|
6 |
+
# Chunked generation originally from https://github.com/serp-ai/bark-with-voice-clone
|
7 |
+
def split_and_recombine_text(text, desired_length=100, max_length=150):
|
8 |
+
# return nltk.sent_tokenize(text)
|
9 |
+
|
10 |
+
# from https://github.com/neonbjb/tortoise-tts
|
11 |
+
"""Split text it into chunks of a desired length trying to keep sentences intact."""
|
12 |
+
# normalize text, remove redundant whitespace and convert non-ascii quotes to ascii
|
13 |
+
text = re.sub(r"\n\n+", "\n", text)
|
14 |
+
text = re.sub(r"\s+", " ", text)
|
15 |
+
text = re.sub(r"[“”]", '"', text)
|
16 |
+
|
17 |
+
rv = []
|
18 |
+
in_quote = False
|
19 |
+
current = ""
|
20 |
+
split_pos = []
|
21 |
+
pos = -1
|
22 |
+
end_pos = len(text) - 1
|
23 |
+
|
24 |
+
def seek(delta):
|
25 |
+
nonlocal pos, in_quote, current
|
26 |
+
is_neg = delta < 0
|
27 |
+
for _ in range(abs(delta)):
|
28 |
+
if is_neg:
|
29 |
+
pos -= 1
|
30 |
+
current = current[:-1]
|
31 |
+
else:
|
32 |
+
pos += 1
|
33 |
+
current += text[pos]
|
34 |
+
if text[pos] == '"':
|
35 |
+
in_quote = not in_quote
|
36 |
+
return text[pos]
|
37 |
+
|
38 |
+
def peek(delta):
|
39 |
+
p = pos + delta
|
40 |
+
return text[p] if p < end_pos and p >= 0 else ""
|
41 |
+
|
42 |
+
def commit():
|
43 |
+
nonlocal rv, current, split_pos
|
44 |
+
rv.append(current)
|
45 |
+
current = ""
|
46 |
+
split_pos = []
|
47 |
+
|
48 |
+
while pos < end_pos:
|
49 |
+
c = seek(1)
|
50 |
+
# do we need to force a split?
|
51 |
+
if len(current) >= max_length:
|
52 |
+
if len(split_pos) > 0 and len(current) > (desired_length / 2):
|
53 |
+
# we have at least one sentence and we are over half the desired length, seek back to the last split
|
54 |
+
d = pos - split_pos[-1]
|
55 |
+
seek(-d)
|
56 |
+
else:
|
57 |
+
# no full sentences, seek back until we are not in the middle of a word and split there
|
58 |
+
while c not in "!?.,\n " and pos > 0 and len(current) > desired_length:
|
59 |
+
c = seek(-1)
|
60 |
+
commit()
|
61 |
+
# check for sentence boundaries
|
62 |
+
elif not in_quote and (c in "!?]\n" or (c == "." and peek(1) in "\n ")):
|
63 |
+
# seek forward if we have consecutive boundary markers but still within the max length
|
64 |
+
while (
|
65 |
+
pos < len(text) - 1 and len(current) < max_length and peek(1) in "!?.]"
|
66 |
+
):
|
67 |
+
c = seek(1)
|
68 |
+
split_pos.append(pos)
|
69 |
+
if len(current) >= desired_length:
|
70 |
+
commit()
|
71 |
+
# treat end of quote as a boundary if its followed by a space or newline
|
72 |
+
elif in_quote and peek(1) == '"' and peek(2) in "\n ":
|
73 |
+
seek(2)
|
74 |
+
split_pos.append(pos)
|
75 |
+
rv.append(current)
|
76 |
+
|
77 |
+
# clean up, remove lines with only whitespace or punctuation
|
78 |
+
rv = [s.strip() for s in rv]
|
79 |
+
rv = [s for s in rv if len(s) > 0 and not re.match(r"^[\s\.,;:!?]*$", s)]
|
80 |
+
|
81 |
+
return rv
|
82 |
+
|
83 |
+
def is_ssml(value):
|
84 |
+
try:
|
85 |
+
ET.fromstring(value)
|
86 |
+
except ET.ParseError:
|
87 |
+
return False
|
88 |
+
return True
|
89 |
+
|
90 |
+
def build_ssml(rawtext, selected_voice):
|
91 |
+
texts = rawtext.split("\n")
|
92 |
+
joinedparts = ""
|
93 |
+
for textpart in texts:
|
94 |
+
textpart = textpart.strip()
|
95 |
+
if len(textpart) < 1:
|
96 |
+
continue
|
97 |
+
joinedparts = joinedparts + f"\n<voice name=\"{selected_voice}\">{saxutils.escape(textpart)}</voice>"
|
98 |
+
ssml = f"""<?xml version="1.0"?>
|
99 |
+
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis"
|
100 |
+
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
101 |
+
xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
|
102 |
+
http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
|
103 |
+
xml:lang="en-US">
|
104 |
+
{joinedparts}
|
105 |
+
</speak>
|
106 |
+
"""
|
107 |
+
return ssml
|
108 |
+
|
109 |
+
def create_clips_from_ssml(ssmlinput):
|
110 |
+
# Parse the XML
|
111 |
+
tree = ET.ElementTree(ET.fromstring(ssmlinput))
|
112 |
+
root = tree.getroot()
|
113 |
+
|
114 |
+
# Create an empty list
|
115 |
+
voice_list = []
|
116 |
+
|
117 |
+
# Loop through all voice tags
|
118 |
+
for voice in root.iter('{http://www.w3.org/2001/10/synthesis}voice'):
|
119 |
+
# Extract the voice name attribute and the content text
|
120 |
+
voice_name = voice.attrib['name']
|
121 |
+
voice_content = voice.text.strip() if voice.text else ''
|
122 |
+
if(len(voice_content) > 0):
|
123 |
+
parts = split_and_recombine_text(voice_content)
|
124 |
+
for p in parts:
|
125 |
+
if(len(p) > 1):
|
126 |
+
# add to tuple list
|
127 |
+
voice_list.append((voice_name, p))
|
128 |
+
return voice_list
|
129 |
+
|
pyproject.toml
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "bark-ui-enhanced"
|
7 |
+
version = "0.4.7"
|
8 |
+
description = "Bark text to audio model with addition features and a Web UI"
|
9 |
+
readme = "README.md"
|
10 |
+
requires-python = ">=3.8"
|
11 |
+
authors = [
|
12 |
+
{name = "Suno Inc (original Bark)", email = "[email protected]"},
|
13 |
+
{name = "Count Floyd"},
|
14 |
+
]
|
15 |
+
# MIT License
|
16 |
+
license = {file = "LICENSE"}
|
17 |
+
|
18 |
+
dependencies = [
|
19 |
+
"boto3",
|
20 |
+
"encodec",
|
21 |
+
"funcy",
|
22 |
+
"mutagen",
|
23 |
+
"numpy",
|
24 |
+
"pytorch_seed",
|
25 |
+
"scipy",
|
26 |
+
"tokenizers",
|
27 |
+
"torch",
|
28 |
+
"tqdm",
|
29 |
+
"transformers",
|
30 |
+
"pyyaml"
|
31 |
+
]
|
32 |
+
|
33 |
+
[project.urls]
|
34 |
+
source = "https://github.com/C0untFloyd/bark-gui"
|
35 |
+
|
36 |
+
[project.optional-dependencies]
|
37 |
+
dev = [
|
38 |
+
"bandit",
|
39 |
+
"black",
|
40 |
+
"codecov",
|
41 |
+
"flake8",
|
42 |
+
"huggingface-hub>=0.14.1",
|
43 |
+
"hypothesis>=6.14,<7",
|
44 |
+
"isort>=5.0.0,<6",
|
45 |
+
"jupyter",
|
46 |
+
"mypy",
|
47 |
+
"nbconvert",
|
48 |
+
"nbformat",
|
49 |
+
"pydocstyle",
|
50 |
+
"pylint",
|
51 |
+
"pytest",
|
52 |
+
"pytest-cov",
|
53 |
+
]
|
54 |
+
|
55 |
+
[tool.setuptools]
|
56 |
+
packages = ["bark"]
|
57 |
+
|
58 |
+
[tool.setuptools.package-data]
|
59 |
+
bark = ["assets/prompts/*.npz", "assets/prompts/v2/*.npz"]
|
60 |
+
|
61 |
+
|
62 |
+
[tool.black]
|
63 |
+
line-length = 100
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pytorch_seed
|
2 |
+
encodec
|
3 |
+
funcy
|
4 |
+
transformers
|
5 |
+
scipy
|
6 |
+
mutagen
|
7 |
+
git+https://github.com/Edresson/Coqui-TTS@multilingual-torchaudio-SE
|
8 |
+
torchaudio
|
9 |
+
pydub
|
10 |
+
ffmpeg-normalize==1.21.0
|
settings.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
|
3 |
+
class Settings:
|
4 |
+
def __init__(self, config_file):
|
5 |
+
self.config_file = config_file
|
6 |
+
self.load()
|
7 |
+
|
8 |
+
def load(self):
|
9 |
+
try:
|
10 |
+
with open(self.config_file, 'r') as f:
|
11 |
+
data = yaml.load(f, Loader=yaml.FullLoader)
|
12 |
+
self.selected_theme = data.get('selected_theme', "gstaff/xkcd")
|
13 |
+
self.server_name = data.get('server_name', "")
|
14 |
+
self.server_port = data.get('server_port', 0)
|
15 |
+
self.server_share = data.get('server_share', False)
|
16 |
+
self.input_text_desired_length = data.get('input_text_desired_length', 110)
|
17 |
+
self.input_text_max_length = data.get('input_text_max_length', 170)
|
18 |
+
self.silence_sentence = data.get('silence_between_sentences', 250)
|
19 |
+
self.silence_speakers = data.get('silence_between_speakers', 500)
|
20 |
+
|
21 |
+
except:
|
22 |
+
self.selected_theme = "gstaff/xkcd"
|
23 |
+
|
24 |
+
def save(self):
|
25 |
+
data = {
|
26 |
+
'selected_theme': self.selected_theme,
|
27 |
+
'server_name': self.server_name,
|
28 |
+
'server_port': self.server_port,
|
29 |
+
'server_share': self.server_share,
|
30 |
+
'input_text_desired_length' : self.input_text_desired_length,
|
31 |
+
'input_text_max_length' : self.input_text_max_length,
|
32 |
+
'silence_between_sentences': self.silence_sentence,
|
33 |
+
'silence_between_speakers': self.silence_speakers,
|
34 |
+
}
|
35 |
+
with open(self.config_file, 'w') as f:
|
36 |
+
yaml.dump(data, f)
|
37 |
+
|
38 |
+
|
39 |
+
|
setup.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup
|
2 |
+
|
3 |
+
setup()
|
speakers.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|