#!/usr/bin/env python3 # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch import torchaudio from tqdm import tqdm import onnxruntime import torchaudio.compliance.kaldi as kaldi def main(args): utt2wav, utt2spk = {}, {} with open('{}/wav.scp'.format(args.dir)) as f: for l in f: l = l.replace('\n', '').split() utt2wav[l[0]] = l[1] with open('{}/utt2spk'.format(args.dir)) as f: for l in f: l = l.replace('\n', '').split() utt2spk[l[0]] = l[1] option = onnxruntime.SessionOptions() option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL option.intra_op_num_threads = 1 providers = ["CPUExecutionProvider"] ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers) utt2embedding, spk2embedding = {}, {} for utt in tqdm(utt2wav.keys()): audio, sample_rate = torchaudio.load(utt2wav[utt]) if sample_rate != 16000: audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio) feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000) feat = feat - feat.mean(dim=0, keepdim=True) embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist() utt2embedding[utt] = embedding spk = utt2spk[utt] if spk not in spk2embedding: spk2embedding[spk] = [] spk2embedding[spk].append(embedding) for k, v in spk2embedding.items(): spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist() torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir)) torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--dir', type=str) parser.add_argument('--onnx_path', type=str) args = parser.parse_args() main(args)